Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(21): e113891, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743763

RESUMO

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Diferenciação Celular
2.
PLoS Genet ; 19(6): e1010796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37315079

RESUMO

Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.


Assuntos
Cílios , Ciliopatias , Humanos , Animais , Camundongos , Cílios/genética , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas/genética , Aminoácidos/metabolismo , Mamíferos/metabolismo , Proteínas do Citoesqueleto/genética
3.
Genet Med ; 26(3): 101034, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054405

RESUMO

PURPOSE: SLC4A10 encodes a plasma membrane-bound transporter, which mediates Na+-dependent HCO3- import, thus mediating net acid extrusion. Slc4a10 knockout mice show collapsed brain ventricles, an increased seizure threshold, mild behavioral abnormalities, impaired vision, and deafness. METHODS: Utilizing exome/genome sequencing in families with undiagnosed neurodevelopmental disorders and international data sharing, 11 patients from 6 independent families with biallelic variants in SLC4A10 were identified. Clinico-radiological and dysmorphology assessments were conducted. A minigene assay, localization studies, intracellular pH recordings, and protein modeling were performed to study the possible functional consequences of the variant alleles. RESULTS: The families harbor 8 segregating ultra-rare biallelic SLC4A10 variants (7 missense and 1 splicing). Phenotypically, patients present with global developmental delay/intellectual disability and central hypotonia, accompanied by variable speech delay, microcephaly, cerebellar ataxia, facial dysmorphism, and infrequently, epilepsy. Neuroimaging features range from some non-specific to distinct neuroradiological findings, including slit ventricles and a peculiar form of bilateral curvilinear nodular heterotopia. In silico analyses showed 6 of 7 missense variants affect evolutionarily conserved residues. Functional analyses supported the pathogenicity of 4 of 7 missense variants. CONCLUSION: We provide evidence that pathogenic biallelic SLC4A10 variants can lead to neurodevelopmental disorders characterized by variable abnormalities of the central nervous system, including altered brain ventricles, thus resembling several features observed in knockout mice.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Deficiência Intelectual/genética , Proteínas de Membrana Transportadoras , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/genética
4.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
5.
Clin Genet ; 102(6): 530-536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35932216

RESUMO

Biallelic pathogenic variants in the genes encoding the dolichol-phosphate mannose synthase subunits (DPM) which produce mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation, are rare causes of congenital disorders of glycosylation. Pathogenic variants in DPM1 and DPM2 are associated with muscle-eye-brain (MEB) disease, whereas DPM3 variants have mostly been reported in patients with isolated muscle disease-dystroglycanopathy. Thus far, only one affected individual with compound heterozygous DPM3 variants presenting with myopathy, mild intellectual disability, seizures, and nonspecific white matter abnormalities (WMA) around the lateral ventricles has been described. Here we present five affected individuals from four unrelated families with global developmental delay/intellectual disability ranging from mild to severe, microcephaly, seizures, WMA, muscle weakness and variable cardiomyopathy. Exome sequencing of the probands revealed an ultra-rare homozygous pathogenic missense DPM3 variant NM_018973.4:c.221A>G, p.(Tyr74Cys) which segregated with the phenotype in all families. Haplotype analysis indicated that the variant arose independently in three families. Functional analysis did not reveal any alteration in the N-glycosylation pathway caused by the variant; however, this does not exclude its pathogenicity in the function of the DPM complex and related cellular pathways. This report provides supporting evidence that, besides DPM1 and DPM2, defects in DPM3 can also lead to a muscle and brain phenotype.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Deficiência Intelectual/patologia , Homozigoto , Músculo Esquelético/patologia , Encefalopatias/patologia , Convulsões/patologia , Manosiltransferases/genética , Proteínas de Membrana/genética
6.
Am J Hum Genet ; 103(6): 995-1008, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471718

RESUMO

Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located ß-HC DNAH11 (defining ODA type 1), and the distally localized ß-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the ß-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient ß-HCs such as that of the unicellular Chlamydomonas reinhardtii.


Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Axonema/genética , Transtornos da Motilidade Ciliar/genética , Humanos , Síndrome de Kartagener/genética , Fenótipo
7.
Am J Hum Genet ; 102(5): 973-984, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727693

RESUMO

Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling.


Assuntos
Padronização Corporal , Dineínas/genética , Síndrome de Kartagener/genética , Mutação/genética , Proteínas Nucleares/genética , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/ultraestrutura , Feminino , Genes Recessivos , Humanos , Mutação com Perda de Função/genética , Masculino , Cauda do Espermatozoide/metabolismo
8.
Brain ; 143(5): 1447-1461, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282878

RESUMO

Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.


Assuntos
Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Síndromes Epilépticas/fisiopatologia , Glutamato Descarboxilase/genética , Anormalidades Múltiplas/genética , Feminino , Humanos , Recém-Nascido , Masculino , Mutação , Linhagem
9.
PLoS Genet ; 14(8): e1007602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148830

RESUMO

The clinical spectrum of ciliopathies affecting motile cilia spans impaired mucociliary clearance in the respiratory system, laterality defects including heart malformations, infertility and hydrocephalus. Using linkage analysis and whole exome sequencing, we identified two recessive loss-of-function MNS1 mutations in five individuals from four consanguineous families: 1) a homozygous nonsense mutation p.Arg242* in four males with laterality defects and infertility and 2) a homozygous nonsense mutation p.Gln203* in one female with laterality defects and recurrent respiratory infections additionally carrying homozygous mutations in DNAH5. Consistent with the laterality defects observed in these individuals, we found Mns1 to be expressed in mouse embryonic ventral node. Immunofluorescence analysis further revealed that MNS1 localizes to the axonemes of respiratory cilia as well as sperm flagella in human. In-depth ultrastructural analyses confirmed a subtle outer dynein arm (ODA) defect in the axonemes of respiratory epithelial cells resembling findings reported in Mns1-deficient mice. Ultrastructural analyses in the female carrying combined mutations in MNS1 and DNAH5 indicated a role for MNS1 in the process of ODA docking (ODA-DC) in the distal respiratory axonemes. Furthermore, co-immunoprecipitation and yeast two hybrid analyses demonstrated that MNS1 dimerizes and interacts with the ODA docking complex component CCDC114. Overall, we demonstrate that MNS1 deficiency in humans causes laterality defects (situs inversus) and likely male infertility and that MNS1 plays a role in the ODA-DC assembly.


Assuntos
Códon sem Sentido , Lateralidade Funcional/genética , Homozigoto , Infertilidade Masculina/genética , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Cílios/ultraestrutura , Feminino , Regulação da Expressão Gênica , Ligação Genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Cauda do Espermatozoide , Sequenciamento do Exoma , Adulto Jovem
10.
Hum Mutat ; 41(12): 2179-2194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131181

RESUMO

Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Cerebelo/anormalidades , Ciliopatias/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação/genética , Proteínas Nucleares/genética , Retina/anormalidades , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/metabolismo , Cílios/patologia , Ciliopatias/diagnóstico por imagem , Ciliopatias/patologia , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Homozigoto , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/diagnóstico por imagem , Doenças Renais Císticas/patologia , Imageamento por Ressonância Magnética , Masculino , Linhagem , Fenótipo , Retina/diagnóstico por imagem , Retina/patologia , Receptor Smoothened/metabolismo , Adulto Jovem , Peixe-Zebra/genética
11.
Am J Hum Genet ; 100(1): 160-168, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28041644

RESUMO

Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right body axis disturbance. Here we report maternally inherited and de novo mutations in PIH1D3 in four men affected with PCD. PIH1D3 is located on the X chromosome and is involved in the preassembly of both outer (ODA) and inner (IDA) dynein arms of cilia and sperm flagella. Loss-of-function mutations in PIH1D3 lead to absent ODAs and reduced to absent IDAs, causing ciliary and flagellar immotility. Further, PIH1D3 interacts and co-precipitates with cytoplasmic ODA/IDA assembly factors DNAAF2 and DNAAF4. This result has clinical and genetic counseling implications for genetically unsolved male case subjects with a classic PCD phenotype that lack additional phenotypes such as intellectual disability or retinitis pigmentosa.


Assuntos
Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Dineínas/metabolismo , Genes Ligados ao Cromossomo X , Mutação/genética , Cauda do Espermatozoide/patologia , Cílios/metabolismo , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Citoplasma/metabolismo , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo
12.
Brain ; 142(10): 2948-2964, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501903

RESUMO

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.


Assuntos
Moléculas de Adesão Celular/genética , Doenças Desmielinizantes/genética , Fatores de Crescimento Neural/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Axônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Criança , Pré-Escolar , Doenças Desmielinizantes/metabolismo , Feminino , Frequência do Gene/genética , Humanos , Lactente , Masculino , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Fatores de Crescimento Neural/metabolismo , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento/metabolismo , Neuroglia/metabolismo , Linhagem , Nervos Periféricos , Isoformas de Proteínas/metabolismo , Nós Neurofibrosos/genética , Nós Neurofibrosos/metabolismo
13.
J Med Genet ; 56(5): 332-339, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30487245

RESUMO

BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas de Homeodomínio/genética , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Consanguinidade , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/química , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Síndrome , Sequenciamento do Exoma
14.
Hum Mutat ; 40(3): 267-280, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520571

RESUMO

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.347delT p.(Ile116Lysfs*25), c.2170_2171insGGTA p.(Ile724Argfs*8), c.1607dupT p.(Leu536Phefs*7), c.2063delA p.(Lys688Serfs*26) and found that PPP1R21 was absent in fibroblasts of an affected individual, supporting the allele's loss of function effect. PPP1R21 function had not been studied except that a large scale affinity proteomics approach suggested an interaction with PIBF1 defective in Joubert syndrome. Our co-immunoprecipitation studies did not confirm this but in contrast defined the localization of PPP1R21 to the early endosome. Consistent with the subcellular expression pattern and the clinical phenotype exhibiting features of storage diseases, we found patient fibroblasts exhibited a delay in clearance of transferrin-488 while uptake was normal. In summary, we delineate a novel neurodevelopmental syndrome caused by biallelic PPP1R21 loss of function variants, and suggest a role of PPP1R21 within the endosomal sorting process or endosome maturation pathway.


Assuntos
Alelos , Endocitose , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fosfoproteínas Fosfatases/genética , Adulto , Criança , Pré-Escolar , Endossomos/metabolismo , Endossomos/ultraestrutura , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Linhagem , Fosfoproteínas Fosfatases/química , Síndrome , Transferrina/metabolismo
15.
FASEB J ; 32(7): 3653-3668, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452568

RESUMO

Renal tubular cells respond to mechanical stimuli generated by urinary flow to regulate the activity and transcript abundance of important genes for ion handling, cellular homeostasis, and proper renal development. The primary cilium, a mechanosensory organelle, is postulated to regulate this mRNA response. The aim of this study is to reveal the transcriptome changes of tubular epithelia in response to fluid flow and determine the role of primary cilia in this process. Inner-medullary collecting duct (CD) cells were subjected to either static or physiologically relevant fluid flow (∼0.6 dyn/cm2). RNA-sequencing analysis of ciliated cells subjected to fluid flow showed up-regulation of 1379 genes and down-regulation of 1294 genes compared with static control cells. Strikingly, only 54 of these genes were identified as gene candidates sensitive to primary cilia sensing of fluid flow, of which 16 were linked to ion or water transport pathways in the CD. Validation by quantitative real-time PCR revealed that only the expression of transferrin receptor, which is involved in iron transport; and tribbles pseudokinase 3, which is involved in insulin signaling, were unequivocally regulated by primary cilia sensing of fluid flow. This study shows that the involvement of primary cilia in ion transport in the collecting duct is exceptionally specific.-Mohammed, S. G., Arjona, F. J., Verschuren, E. H. J., Bakey, Z., Alkema, W., van Hijum, S., Schmidts, M., Bindels, R. J. M., Hoenderop, J. G. J. Primary cilia-regulated transcriptome in the renal collecting duct.


Assuntos
Cílios/metabolismo , Túbulos Renais Coletores/metabolismo , Transcriptoma , Animais , Linhagem Celular , Túbulos Renais Coletores/citologia , Camundongos , Microfluídica
16.
Thorax ; 73(2): 157-166, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28790179

RESUMO

RATIONALE: Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265. Early, accurate diagnosis is key to implementing appropriate management but clinical diagnostic tests can be equivocal. OBJECTIVES: To determine the importance of genetic screening for primary ciliary dyskinesia in a UK South Asian population with a typical clinical phenotype, where standard testing is inconclusive. METHODS: Next-generation sequencing was used to screen 86 South Asian patients who had a clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 p.His154Pro missense variant compared with other dynein arm-associated gene mutations on diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity was assessed by oligomerisation assay. RESULTS: Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation which was found to disrupt protein oligomerisation. Variable diagnostic test results were obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus are missed. CONCLUSIONS: The CCDC103 p.His154Pro mutation is more prevalent than previously thought in the South Asian community and causes primary ciliary dyskinesia that can be difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there is a strong clinical phenotype with inconclusive standard diagnostic tests.


Assuntos
Povo Asiático/genética , Síndrome de Kartagener/etnologia , Síndrome de Kartagener/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Paquistão/etnologia , Reino Unido , Adulto Jovem
17.
BMC Med Genet ; 19(1): 196, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419932

RESUMO

BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Catarata/genética , Perda Auditiva Neurossensorial/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Isoleucina-tRNA Ligase/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Adulto , Sequência de Aminoácidos , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/patologia , Catarata/diagnóstico , Catarata/patologia , Consanguinidade , Feminino , Expressão Gênica , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Homozigoto , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica , Subunidades Proteicas/genética , Síndrome , Sequenciamento do Exoma
18.
Hum Mol Genet ; 24(5): 1410-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361962

RESUMO

Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathies.


Assuntos
Osso e Ossos/anormalidades , Proteínas de Ciclo Celular/genética , Centríolos/genética , Síndrome de Ellis-Van Creveld/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Osso e Ossos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Mapeamento Cromossômico , Cromossomos Humanos Par 5/genética , Cromossomos Humanos Par 5/metabolismo , Cílios/patologia , Estudos de Coortes , Modelos Animais de Doenças , Europa (Continente) , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Arábia Saudita , Peixe-Zebra
19.
PLoS Genet ; 10(9): e1004577, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25232951

RESUMO

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.


Assuntos
Cílios/metabolismo , Cílios/fisiologia , Proteínas/metabolismo , Animais , Dineínas do Axonema , Axonema/genética , Axonema/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Pré-Escolar , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Feminino , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Masculino , Mutação/genética , Linhagem , Fenótipo , Proteínas/genética , Transcrição Gênica/genética
20.
Hum Mol Genet ; 23(13): 3362-74, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24518672

RESUMO

Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the 'empty' CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the 'head' structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Kartagener/genética , Axonema/metabolismo , Axonema/fisiologia , Proteínas do Citoesqueleto/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/fisiopatologia , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA