Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Electron Microsc (Tokyo) ; 60 Suppl 1: S137-48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21844585

RESUMO

Despite great progress in the identification and characterization of the key molecular players in neuronal function, remarkably little is known about their supramolecular organization. Cryo-electron tomography (cryo-ET), providing three-dimensional views of the molecular components of the cell in their native, fully hydrated environment, is uniquely positioned to elucidate the native architecture of the molecular machinery of the neuron. In our laboratory, we employ cryo-ET to study neuronal morphology in a variety of experimental systems and develop methods to extract quantitative and functional information from tomographic data. This approach has allowed us to shed light onto the intricate organization of the molecules of the synaptic cleft and the presynaptic cytomatrix, providing evidence for their functional roles. Also, cryo-ET of cultured neurons is beginning to open new perspectives on neuronal ultrastructure and the architecture of synaptic complexes in situ. Here, we will review these findings and discuss future directions towards the elucidation of the molecular landscape of the neuron.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Neurônios/ultraestrutura , Animais , Células Cultivadas , Proteínas do Citoesqueleto/química , Endocitose , Exocitose , Neurônios/química , Neuropeptídeos/química , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/química , Sinapses/ultraestrutura , Vesículas Sinápticas/química , Vesículas Sinápticas/ultraestrutura
2.
PLoS One ; 13(6): e0197886, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864134

RESUMO

Many cellular processes depend on a precise structural organization of molecular components. Here, we established that neurons grown in culture provide a suitable system for in situ structural investigations of cellular structures by cryo-electron tomography, a method that allows high resolution, three-dimensional imaging of fully hydrated, vitrified cellular samples. A higher level of detail of cellular components present in our images allowed us to quantitatively characterize presynaptic and cytoskeletal organization, as well as structures involved in axonal transport and endocytosis. In this way we provide a structural framework into which information from other methods need to fit. Importantly, we show that short pleomorphic linkers (tethers and connectors) extensively interconnect different types of spherical vesicles and other lipid membranes in neurons imaged in a close-to-native state. These linkers likely serve to organize and precisely position vesicles involved in endocytosis, axonal transport and synaptic release. Hence, structural interactions via short linkers may serve as ubiquitous vesicle organizers in neuronal cells.


Assuntos
Axônios/metabolismo , Rede Nervosa/citologia , Vesículas Sinápticas/metabolismo , Animais , Axônios/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Hipocampo/citologia , Rede Nervosa/ultraestrutura , Ratos
3.
Cell Rep ; 18(1): 161-173, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052246

RESUMO

Synucleins (α, ß, γ-synuclein) are a family of abundant presynaptic proteins. α-Synuclein is causally linked to the pathogenesis of Parkinson's disease (PD). In an effort to define their physiological and pathological function or functions, we investigated the effects of deleting synucleins and overexpressing α-synuclein PD mutations, in mice, on synapse architecture using electron microscopy (EM) and cryoelectron tomography (cryo-ET). We show that synucleins are regulators of presynapse size and synaptic vesicle (SV) pool organization. Using cryo-ET, we observed that deletion of synucleins increases SV tethering to the active zone but decreases the inter-linking of SVs by short connectors. These ultrastructural changes were correlated with discrete protein phosphorylation changes in αßγ-synuclein-/- neurons. We also determined that α-synuclein PD mutants (PARK1/hA30P and PARK4/hα-syn) primarily affected presynaptic cytomatrix proximal to the active zone, congruent with previous findings that these PD mutations decrease neurotransmission. Collectively, our results suggest that synucleins are important orchestrators of presynaptic terminal topography.


Assuntos
Sinucleínas/metabolismo , Animais , Humanos , Camundongos , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
4.
Neuron ; 88(6): 1165-1172, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26687224

RESUMO

The cleft is an integral part of synapses, yet its macromolecular organization remains unclear. We show here that the cleft of excitatory synapses exhibits a distinct density profile as measured by cryoelectron tomography (cryo-ET). Aiming for molecular insights, we analyzed the synapse-organizing proteins Synaptic Cell Adhesion Molecule 1 (SynCAM 1) and EphB2. Cryo-ET of SynCAM 1 knockout and overexpressor synapses showed that this immunoglobulin protein shapes the cleft's edge. SynCAM 1 delineates the postsynaptic perimeter as determined by immunoelectron microscopy and super-resolution imaging. In contrast, the EphB2 receptor tyrosine kinase is enriched deeper within the postsynaptic area. Unexpectedly, SynCAM 1 can form ensembles proximal to postsynaptic densities, and synapses containing these ensembles were larger. Postsynaptic SynCAM 1 surface puncta were not static but became enlarged after a long-term depression paradigm. These results support that the synaptic cleft is organized on a nanoscale into sub-compartments marked by distinct trans-synaptic complexes.


Assuntos
Moléculas de Adesão Celular/fisiologia , Moléculas de Adesão Celular/ultraestrutura , Imunoglobulinas/fisiologia , Imunoglobulinas/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Molécula 1 de Adesão Celular , Moléculas de Adesão Celular Neuronais/fisiologia , Moléculas de Adesão Celular Neuronais/ultraestrutura , Células Cultivadas , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/fisiologia , Neurônios/ultraestrutura
5.
Ultramicroscopy ; 143: 15-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24332462

RESUMO

Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Elétrons , Corantes Fluorescentes/química , Substâncias Macromoleculares/química , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA