Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1218-1230, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297678

RESUMO

We report on an Yb:YAG thin-disk multipass amplifier delivering 100 ns long pulses at a central wavelength of 1030 nm with an energy of 330 mJ at a repetition rate of 100 Hz. The beam quality factor at the maximum energy was measured to be M2 < 1.17. The small signal gain is 21.7, and the gain at 330 mJ was measured to be 6.9. The 20-pass amplifier is designed as a concatenation of stable resonator segments in which the beam is alternately Fourier transformed and relay-imaged back to the disk by a 4f-imaging optical scheme stage. The Fourier transform propagation makes the output beam robust against spherical phase front distortions, while the 4f-stage is used to compensate the thermal lens of the thin-disk and to reduce the footprint of the amplifier.

2.
Phys Rev Lett ; 129(19): 191801, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399752

RESUMO

We report on a search for dark matter axionlike particles (ALPs) using a Ramsey-type apparatus for cold neutrons. A hypothetical ALP-gluon coupling would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 µHz to 1 kHz, and no significant oscillating signal has been found. The usage of present dark-matter models allows one to constrain the coupling of ALPs to gluons in the mass range from 10^{-19} to 4×10^{-12} eV. The best limit of C_{G}/f_{a}m_{a}=2.7×10^{13} GeV^{-2} (95% C.L.) is reached in the mass range from 2×10^{-17} to 2×10^{-14} eV.

3.
Appl Opt ; 58(11): 2904-2912, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044897

RESUMO

This study investigates the stability to tilts (misalignments) of Fourier-based multipass amplifiers, i.e., amplifiers where a Fourier transform is used to transport the beam from pass to pass. Here, the stability properties of these amplifiers to misalignments (tilts) of their optical components have been investigated. For this purpose, a method to quantify the sensitivity to tilts based on the amplifier small-signal gain has been elaborated and compared with measurements. To improve tilt stability by more than an order of magnitude, a simple auto-alignment system has been proposed and tested. This study, combined with other investigations devoted to the stability of the output beam to variations in aperture and thermal lens effects of the active medium, qualifies the Fourier-based amplifier for the high-energy and high-power sectors.

4.
Appl Opt ; 57(35): 10323-10333, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645241

RESUMO

We present an architecture for a multipass amplifier based on a succession of optical Fourier transforms and short propagations that shows a superior stability for variations of the thermal lens compared to state-of-the-art 4f-based amplifiers. We found that the proposed multipass amplifier is robust to variations of the active medium dioptric power. The superiority of the proposed architecture is demonstrated by analyzing the variations of the size and divergence of the output beam in the form of a Taylor expansion around the design value for variations of the thermal lens in the active medium. The dependence of the output beam divergence and size is investigated also for variations of the number of passes, for aperture effects in the active medium, and as a function of the size of the beam on the active medium. This architecture makes efficient use of the transverse beam filtering inherent in the active medium to deliver a beam with excellent quality (TEM00).

5.
J Magn Reson ; 353: 107496, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37320959

RESUMO

We present an apparatus that applies Ramsey's method of separated oscillatory fields to proton spins in water molecules. The setup consists of a water circuit, a spin polarizer, a magnetically shielded interaction region with various radio frequency elements, and a nuclear magnetic resonance system to measure the spin polarization. We show that this apparatus can be used for Rabi resonance measurements and to investigate magnetic and pseudomagnetic field effects in Ramsey-type precision measurements with a sensitivity below 100 pT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA