Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 65-92, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26666651

RESUMO

T cell responses display two key characteristics. First, a small population of epitope-specific naive T cells expands by several orders of magnitude. Second, the T cells within this proliferating population take on diverse functional and phenotypic properties that determine their ability to exert effector functions and contribute to T cell memory. Recent technological advances in lineage tracing allow us for the first time to study these processes in vivo at single-cell resolution. Here, we summarize resulting data demonstrating that although epitope-specific T cell responses are reproducibly similar at the population level, expansion potential and diversification patterns of the offspring derived from individual T cells are highly variable during both primary and recall immune responses. In spite of this stochastic response variation, individual memory T cells can serve as adult stem cells that provide robust regeneration of an epitope-specific tissue through population averaging. We discuss the relevance of these findings for T cell memory formation and clinical immunotherapy.


Assuntos
Células-Tronco Adultas/imunologia , Diferenciação Celular , Imunoterapia/métodos , Análise de Célula Única/métodos , Linfócitos T/imunologia , Animais , Biodiversidade , Linhagem da Célula , Proliferação de Células , Diversidade Cultural , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Memória Imunológica , Ativação Linfocitária
2.
Nature ; 549(7670): 106-110, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813410

RESUMO

The clinical benefit for patients with diverse types of metastatic cancers that has been observed upon blockade of the interaction between PD-1 and PD-L1 has highlighted the importance of this inhibitory axis in the suppression of tumour-specific T-cell responses. Notwithstanding the key role of PD-L1 expression by cells within the tumour micro-environment, our understanding of the regulation of the PD-L1 protein is limited. Here we identify, using a haploid genetic screen, CMTM6, a type-3 transmembrane protein of previously unknown function, as a regulator of the PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1 protein expression in all human tumour cell types tested and in primary human dendritic cells. Furthermore, through both a haploid genetic modifier screen in CMTM6-deficient cells and genetic complementation experiments, we demonstrate that this function is shared by its closest family member, CMTM4, but not by any of the other CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without affecting PD-L1 (also known as CD274) transcription levels. Rather, we demonstrate that CMTM6 is present at the cell surface, associates with the PD-L1 protein, reduces its ubiquitination and increases PD-L1 protein half-life. Consistent with its role in PD-L1 protein regulation, CMTM6 enhances the ability of PD-L1-expressing tumour cells to inhibit T cells. Collectively, our data reveal that PD-L1 relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest potential new avenues to block this pathway.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Teste de Complementação Genética , Haploidia , Humanos , Proteínas com Domínio MARVEL/genética , Melanoma/genética , Melanoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 117(12): 6686-6696, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161126

RESUMO

Cytotoxic CD8+ T cells can effectively kill target cells by producing cytokines, chemokines, and granzymes. Expression of these effector molecules is however highly divergent, and tools that identify and preselect CD8+ T cells with a cytotoxic expression profile are lacking. Human CD8+ T cells can be divided into IFN-γ- and IL-2-producing cells. Unbiased transcriptomics and proteomics analysis on cytokine-producing fixed CD8+ T cells revealed that IL-2+ cells produce helper cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+ T cells expressed the surface marker CD29 already prior to stimulation. CD29 also marked T cells with cytotoxic gene expression from different tissues in single-cell RNA-sequencing data. Notably, CD29+ T cells maintained the cytotoxic phenotype during cell culture, suggesting a stable phenotype. Preselecting CD29-expressing MART1 TCR-engineered T cells potentiated the killing of target cells. We therefore propose that CD29 expression can help evaluate and select for potent therapeutic T cell products.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Integrina beta1/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Melanoma/patologia , Linfócitos T Citotóxicos/imunologia , Perfilação da Expressão Gênica , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Prognóstico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Taxa de Sobrevida
4.
N Engl J Med ; 375(9): 819-29, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27433843

RESUMO

BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Imunoterapia , Janus Quinase 1/genética , Janus Quinase 2/genética , Melanoma/genética , Mutação , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microglobulina beta-2/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Biópsia , Exoma , Regulação Neoplásica da Expressão Gênica , Genes MHC Classe I , Humanos , Interferon gama/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/secundário , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Análise de Sequência de DNA , Transdução de Sinais
5.
Immunol Rev ; 257(1): 72-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24329790

RESUMO

The infiltration of human tumors by T cells is a common phenomenon, and over the past decades, it has become increasingly clear that the nature of such intratumoral T-cell populations can predict disease course. Furthermore, intratumoral T cells have been utilized therapeutically in clinical studies of adoptive T-cell therapy. In this review, we describe how novel methods that are either based on T-cell receptor (TCR) sequencing or on cancer exome analysis allow the analysis of the tumor reactivity and antigen-specificity of the intratumoral TCR repertoire with unprecedented detail. Furthermore, we discuss studies that have started to utilize these techniques to probe the link between cancer exomes and the intratumoral TCR pool. Based on the observation that both the cancer epitope repertoire and intratumoral TCR repertoire appear highly individual, we outline strategies, such as 'autologous TCR gene therapy', that exploit the tumor-resident TCR repertoire for the development of personalized immunotherapy.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/imunologia , Terapia Genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética
6.
EMBO J ; 32(2): 194-203, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23258224

RESUMO

Cancer cells deviate from normal body cells in two immunologically important ways. First, tumour cells carry tens to hundreds of protein-changing mutations that are either responsible for cellular transformation or that have accumulated as mere passengers. Second, as a consequence of genetic and epigenetic alterations, tumour cells express a series of proteins that are normally not present or present at lower levels. These changes lead to the presentation of an altered repertoire of MHC class I-associated peptides. Importantly, while there is now strong clinical evidence that cytotoxic T-cell activity against such tumour-associated antigens can lead to cancer regression, at present we fail to understand which tumour-associated antigens form the prime targets in effective immunotherapies. Here, we describe how recent developments in cancer genomics will make it feasible to establish the repertoire of tumour-associated epitopes on a patient-specific basis. The elucidation of this 'cancer antigenome' will be valuable to reveal how clinically successful immunotherapies mediate their effect. Furthermore, the description of the cancer antigenome should form the basis of novel forms of personalized cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/genética , Genoma Humano , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Genoma Humano/imunologia , Genoma Humano/fisiologia , Humanos , Imunoterapia/métodos , Imunoterapia/tendências , Modelos Biológicos , Proteínas de Neoplasias/genética
7.
Cancer Immunol Immunother ; 66(9): 1163-1173, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28451790

RESUMO

BACKGROUND: Usual type vulvar intraepithelial neoplasia (uVIN) is caused by HPV, predominantly type 16. Several forms of HPV immunotherapy have been studied, however, clinical results could be improved. A novel intradermal administration route, termed DNA tattooing, is superior in animal models, and was tested for the first time in humans with a HPV16 E7 DNA vaccine (TTFC-E7SH). METHODS: The trial was designed to test safety, immunogenicity, and clinical response of TTFC-E7SH in twelve HPV16+ uVIN patients. Patients received six vaccinations via DNA tattooing. The first six patients received 0.2 mg TTFC-E7SH and the next six 2 mg TTFC-E7SH. Vaccine-specific T-cell immunity was evaluated by IFNγ-ELISPOT and multiparametric flow cytometry. RESULTS: Only grade I-II adverse events were observed upon TTFC-E7SH vaccination. The ELISPOT analysis showed in 4/12 patients a response to the peptide pool containing shuffled E7 peptides. Multiparametric flow cytometry showed low CD4+ and/or CD8+ T-cell responses as measured by increased expression of PD-1 (4/12 in both), CTLA-4 (2/12 and 3/12), CD107a (5/12 and 4/12), or the production of IFNγ (2/12 and 1/12), IL-2 (3/12 and 4/12), TNFα (2/12 and 1/12), and MIP1ß (3/12 and 6/12). At 3 months follow-up, no clinical response was observed in any of the twelve vaccinated patients. CONCLUSION: DNA tattoo vaccination was shown to be safe. A low vaccine-induced immune response and no clinical response were observed in uVIN patients after TTFC-E7SH DNA tattoo vaccination. Therefore, a new phase I/II trial with an improved DNA vaccine format is currently in development for patients with uVIN.


Assuntos
DNA/genética , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/imunologia , Vacinas de DNA/imunologia , Neoplasias Vulvares/genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Vulvares/terapia
8.
J Immunol ; 195(11): 5285-95, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525288

RESUMO

It is well established how effector T cells exit the vasculature to enter the peripheral tissues in which an infection is ongoing. However, less is known regarding how CTLs migrate toward infected cells after entry into peripheral organs. Recently, it was shown that the chemokine receptor CXCR3 on T cells has an important role in their ability to localize infected cells and to control vaccinia virus infection. However, the search strategy of T cells for virus-infected targets has not been investigated in detail and could involve chemotaxis toward infected cells, chemokinesis (i.e., increased motility) combined with CTL arrest when targets are detected, or both. In this study, we describe and analyze the migration of CTLs within HSV-1-infected epidermis in vivo. We demonstrate that activated T cells display a subtle distance-dependent chemotaxis toward clusters of infected cells and confirm that this is mediated by CXCR3 and its ligands. Although the chemotactic migration is weak, computer simulations based on short-term experimental data, combined with subsequent long-term imaging indicate that this behavior is crucial for efficient target localization and T cell accumulation at effector sites. Thus, chemotactic migration of effector T cells within peripheral tissue forms an important factor in the speed with which T cells are able to arrive at sites of infection.


Assuntos
Quimiotaxia de Leucócito/imunologia , Epiderme/imunologia , Herpes Simples/imunologia , Receptores CXCR3/imunologia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Simulação por Computador , Epiderme/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
J Immunol ; 195(9): 4075-84, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401000

RESUMO

The proteasome is able to create spliced Ags, in which two distant parts of a protein are excised and ligated together to form a novel peptide, for presentation by MHC class I molecules. These noncontiguous epitopes are generated via a transpeptidation reaction catalyzed by the proteasomal active sites. Transpeptidation reactions in the proteasome follow explicit rules and occur particularly efficiently when the C-terminal ligation partner contains a lysine or arginine residue at the site of ligation. Lysine contains two amino groups that theoretically may both participate in ligation reactions, implying that potentially not only peptide but also isopeptide linkages could be formed. Using nuclear magnetic resonance spectroscopy, we demonstrate in the present study that the proteasome can use the ε-amino group of an N-terminal lysine residue in transpeptidation reactions to create a novel type of posttranslationally modified epitopes. We show that the overall efficiency of ε ligation is only 10-fold lower as compared with α ligation, suggesting that the proteasome can produce sufficient isopeptide Ag to evoke a T cell response. Additionally, we show that isopeptides are more stable toward further proteasomal processing than are normal peptides, and we demonstrate that isopeptides can bind to HLA-A2.1 and HLA-A3 with high affinity. These properties likely increase the fraction of ε-ligated peptides presented on the cell surface for CD8(+) T cell surveillance. Finally, we show that isopeptide Ags are immunogenic in vivo. We postulate that ε ligation is a genuine posttranslational modification, suggesting that the proteasome can create a novel type of Ag that is likely to play a role in immunity.


Assuntos
Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Processamento de Proteína , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Processamento de Proteína Pós-Traducional , Linfócitos T/imunologia
10.
J Immunol ; 195(9): 4085-95, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401003

RESUMO

Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/química , Processamento de Proteína , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/imunologia
11.
J Immunol ; 193(10): 4803-13, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25311806

RESUMO

Virus or tumor Ag-derived peptides that are displayed by MHC class I molecules are attractive starting points for vaccine development because they induce strong protective and therapeutic cytotoxic T cell responses. In thus study, we show that the MHC binding and consequent T cell reactivity against several HLA-A*02 restricted epitopes can be further improved through the incorporation of nonproteogenic amino acids at primary and secondary anchor positions. We screened more than 90 nonproteogenic, synthetic amino acids through a range of epitopes and tested more than 3000 chemically enhanced altered peptide ligands (CPLs) for binding affinity to HLA-A*0201. With this approach, we designed CPLs of viral epitopes, of melanoma-associated Ags, and of the minor histocompatibility Ag UTA2-1, which is currently being evaluated for its antileukemic activity in clinical dendritic cell vaccination trials. The crystal structure of one of the CPLs in complex with HLA-A*0201 revealed the molecular interactions likely responsible for improved binding. The best CPLs displayed enhanced affinity for MHC, increasing MHC stability and prolonging recognition by Ag-specific T cells and, most importantly, they induced accelerated expansion of antitumor T cell frequencies in vitro and in vivo as compared with the native epitope. Eventually, we were able to construct a toolbox of preferred nonproteogenic residues with which practically any given HLA-A*02 restricted epitope can be readily optimized. These CPLs could improve the therapeutic outcome of vaccination strategies or can be used for ex vivo enrichment and faster expansion of Ag-specific T cells for transfer into patients.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Antígeno HLA-A2/imunologia , Neoplasias/prevenção & controle , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Linfócitos B , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Cristalografia por Raios X , Epitopos , Expressão Gênica , Antígeno HLA-A2/química , Antígeno HLA-A2/genética , Humanos , Imunização , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Neoplasias/imunologia , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
12.
J Immunol ; 192(2): 641-8, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24342804

RESUMO

Peptide-MHC (pMHC) multimers have become one of the most widely used tools to measure Ag-specific T cell responses in humans. With the aim of understanding the requirements for pMHC-based personalized immunomonitoring, in which individuals expressing subtypes of the commonly studied HLA alleles are encountered, we assessed how the ability to detect Ag-specific T cells for a given peptide is affected by micropolymorphic differences between HLA subtypes. First, analysis of a set of 10 HLA-A*02:01-restricted T cell clones demonstrated that staining with pMHC multimers of seven distinct subtypes of the HLA-A*02 allele group was highly variable and not predicted by sequence homology. Second, to analyze the effect of minor sequence variation in a clinical setting, we screened tumor-infiltrating lymphocytes of an HLA-A*02:06 melanoma patient with either subtype-matched or HLA-A*02:01 multimers loaded with 145 different melanoma-associated Ags. This revealed that of the four HLA-A*02:06-restricted melanoma-associated T cell responses observed in this patient, two responses were underestimated and one was overlooked when using subtype-mismatched pMHC multimer collections. To our knowledge, these data provide the first demonstration of the strong effect of minor sequence variation on pMHC-based personalized immunomonitoring, and they provide tools to prevent this issue for common variants within the HLA-A*02 allele group.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/imunologia , Polimorfismo Genético/genética , Alelos , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Células Clonais/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Complexo Principal de Histocompatibilidade/genética , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo Genético/imunologia , Alinhamento de Sequência
13.
Mol Ther ; 23(9): 1541-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25896248

RESUMO

Here, we describe a fatal serious adverse event observed in a patient infused with autologous T-cell receptor (TCR) transduced T cells. This TCR, originally obtained from a melanoma patient, recognizes the well-described HLA-A*0201 restricted 26-35 epitope of MART-1, and was not affinity enhanced. Patient 1 with metastatic melanoma experienced a cerebral hemorrhage, epileptic seizures, and a witnessed cardiac arrest 6 days after cell infusion. Three days later, the patient died from multiple organ failure and irreversible neurologic damage. After T-cell infusion, levels of IL-6, IFN-γ, C-reactive protein (CRP), and procalcitonin increased to extreme levels, indicative of a cytokine release syndrome or T-cell-mediated inflammatory response. Infused T cells could be recovered from blood, broncho-alveolar lavage, ascites, and after autopsy from tumor sites and heart tissue. High levels of NT-proBNP indicate semi-acute heart failure. No cross reactivity of the modified T cells toward a beating cardiomyocyte culture was observed. Together, these observations suggest that high levels of inflammatory cytokines alone or in combination with semi-acute heart failure and epileptic seizure may have contributed substantially to the occurrence of the acute and lethal event. Protocol modifications to limit the risk of T-cell activation-induced toxicity are discussed.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Antígeno MART-1/imunologia , Receptores de Antígenos de Linfócitos T/genética , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Terapia Baseada em Transplante de Células e Tecidos/métodos , Evolução Fatal , Feminino , Humanos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígeno MART-1/metabolismo , Melanoma/diagnóstico , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Estadiamento de Neoplasias , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução Genética
14.
J Immunol ; 191(6): 3232-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23940272

RESUMO

TCR gene therapy is a promising approach for the treatment of various human malignancies. However, the tumoricidal activity of TCR-modified T cells may be limited by local immunosuppressive mechanisms within the tumor environment. In particular, many malignancies induce T cell suppression in their microenvironment by TGF-ß secretion. In this study, we evaluate whether blockade of TGF-ß signaling in TCR-modified T cells enhances TCR gene therapy efficacy in an autochthonous mouse tumor model. Treatment of mice with advanced prostate cancer with T cells genetically engineered to express a tumor-reactive TCR and a dominant-negative TGF-ß receptor II induces complete and sustained tumor regression, enhances survival, and leads to restored differentiation of prostate epithelium. These data demonstrate the potential to tailor the activity of TCR-modified T cells by additional genetic modification and provide a strong rationale for the clinical testing of TGF-ß signaling blockade to enhance TCR gene therapy against advanced cancers.


Assuntos
Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Neoplasias Experimentais/terapia , Neoplasias da Próstata/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/transplante , Transdução Genética
15.
Nat Rev Immunol ; 2(7): 512-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12094225

RESUMO

T cells are tightly controlled cellular machines that monitor changes in epitope presentation. Although T-cell function is regulated by means of numerous interactions with other cell types and soluble factors, the T-cell receptor (TCR) is the only structure on the T-cell surface that defines its antigen-recognition potential. Consequently, the transfer of T-cell receptors into recipient cells can be used as a strategy for the passive transfer of T-cell immunity. In this review, I discuss the pros and cons of TCR gene transfer as a strategy to induce defined virus- and tumour-specific T-cell immunity.


Assuntos
Terapia Genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Humanos
16.
Eur J Immunol ; 43(11): 3038-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23893393

RESUMO

The low frequency of antigen-specific naïve T cells has challenged numerous laboratories to develop various techniques to study the naïve T-cell repertoire. Here, we combine the generation of naïve repertoire-derived antigen-specific T-cell lines based on MHC-tetramer staining and magnetic-bead enrichment with in-depth functional assessment of the isolated T cells. Cytomegalovirus (CMV) specific T-cell lines were generated from seronegative individuals. Generated T-cell lines consisted of a variety of immunodominant CMV-epitope-specific oligoclonal T-cell populations restricted to various HLA-molecules (HLA-A1, A2, B7, B8, and B40), and the functional and structural avidity of the CMV-specific T cells was studied. Although all CMV-specific T cells were isolated based on their reactivity toward a specific peptide-MHC complex, we observed a large variation in the functional avidity of the MHC-tetramer positive T-cell populations, which correlated with the structural avidity measured by the recently developed Streptamer koff -rate assay. Our data demonstrate that MHC-tetramer staining is not always predictive for specific T-cell reactivity, and challenge the sole use of MHC-tetramers as an indication of the peripheral T-cell repertoire, independent of the analysis of functional activity or structural avidity parameters.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular , Epitopos de Linfócito T/imunologia , Antígeno HLA-A1/imunologia , Antígeno HLA-A2/imunologia , Antígeno HLA-B40/imunologia , Antígeno HLA-B7/imunologia , Antígeno HLA-B8/imunologia , Humanos , Interferon gama/biossíntese , Subpopulações de Linfócitos T/imunologia
17.
Cancer Immunol Immunother ; 63(5): 449-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24609989

RESUMO

INTRODUCTION: Ipilimumab, a cytotoxic T lymphocyte-associated antigen-4 blocking antibody, has improved overall survival (OS) in metastatic melanoma in phase III trials. However, about 80 % of patients fail to respond, and no predictive markers for benefit from therapy have been identified. We analysed a 'real world' population of patients treated with ipilimumab to identify markers for treatment benefit. METHODS: Patients with advanced cutaneous melanoma were treated in the Netherlands (NL) and the United Kingdom (UK) with ipilimumab at 3 mg/kg. Baseline characteristics and peripheral blood parameters were assessed, and patients were monitored for the occurrence of adverse events and outcomes. RESULTS: A total of 166 patients were treated in the Netherlands. Best overall response and disease control rates were 17 and 35 %, respectively. Median follow-up was 17.9 months, with a median progression-free survival of 2.9 months. Median OS was 7.5 months, and OS at 1 year was 37.8 % and at 2 years was 22.9 %. In a multivariate model, baseline serum lactate dehydrogenase (LDH) was demonstrated to be the strongest predictive factor for OS. These findings were validated in an independent cohort of 64 patients from the UK. CONCLUSION: In both the NL and UK cohorts, long-term benefit of ipilimumab treatment was unlikely for patients with baseline serum LDH greater than twice the upper limit of normal. In the absence of prospective data, clinicians treating melanoma may wish to consider the data presented here to guide patient selection for ipilimumab therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/análise , L-Lactato Desidrogenase/sangue , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Humanos , Ipilimumab , Estimativa de Kaplan-Meier , Masculino , Melanoma/enzimologia , Melanoma/mortalidade , Melanoma/secundário , Pessoa de Meia-Idade , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Adulto Jovem
18.
Cancer Discov ; 14(7): 1226-1251, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563969

RESUMO

Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Neoplasias , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral/imunologia , Camundongos , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Antígenos CD8/metabolismo
19.
Cancer Discov ; 14(7): 1206-1225, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563906

RESUMO

IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rßγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings. Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell-selective IL2 for the treatment of cancer. See related article by Kaptein et al. p. 1226.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Animais , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/farmacologia , Camundongos , Humanos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Neoplasias/imunologia , Neoplasias/tratamento farmacológico
20.
Science ; 384(6697): 785-792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753784

RESUMO

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Biossíntese de Proteínas , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Códon/genética , Leucina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA