Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834098

RESUMO

Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Pirimidinonas/química , Escherichia coli , Portadores de Fármacos , Anti-Infecciosos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Íons , Mamíferos
2.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012270

RESUMO

As a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid. Impurities with similar properties, heterogeneity of exosome characteristics, and time-related biofouling complicate the separation. This practical review presents the state-of-the-art methods available for the separation of exosomes. Furthermore, it is shown how new separation methods can be developed. A particular focus lies on the fabrication and design of microfluidic devices using highly selective affinity separation. Due to their compactness, quick analysis time and portable form factor, these microfluidic devices are particularly suitable to deliver fast and reliable results for POC applications. For these devices, new manufacturing methods (e.g., laminating, replica molding and 3D printing) that use low-cost materials and do not require clean rooms are presented. Additionally, special flow routes and patterns that increase contact surfaces, as well as residence time, and thus improve affinity purification are displayed. Finally, various analyses are shown that can be used to evaluate the separation results of a newly developed device. Overall, this review paper provides a toolbox for developing new microfluidic affinity devices for exosome separation.


Assuntos
Exossomos , Vesículas Extracelulares , Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip , Biópsia Líquida , Microfluídica
3.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499070

RESUMO

Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5−25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier.


Assuntos
Dextranos , Nanopartículas de Magnetita , Dextranos/química , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos , Tamanho da Partícula
4.
Langmuir ; 37(19): 5902-5908, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33951395

RESUMO

The adsorption and desorption of nucleic acid to a solid surface is ubiquitous in various research areas like pharmaceutics, nanotechnology, molecular biology, and molecular electronics. In spite of this widespread importance, it is still not well understood how the negatively charged deoxyribonucleic acid (DNA) binds to the negatively charged silica surface in an aqueous solution. In this article, we study the adsorption of DNA to the silica surface using both modeling and experiments and shed light on the complicated binding (DNA to silica) process. The binding agent mediated DNA adsorption was elegantly captured by cooperative Langmuir model. Bulk-depletion experiments were performed to conclude the necessity of a positively charged binding agent for efficient DNA binding, which complements the findings from the model. A profound understanding of DNA binding will help to tune various processes for efficient nucleic acid extraction and purification. However, this work goes beyond the DNA binding and can shed light on other binding agent mediated surface-surface, surface-molecule, molecule-molecule interaction.


Assuntos
Dióxido de Silício , Água , Adsorção , DNA , Propriedades de Superfície
5.
Chemphyschem ; 21(20): 2347-2356, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32794279

RESUMO

Protein-surface interactions are exploited in various processes in life sciences and biotechnology. Many of such processes are performed in presence of a buffer system, which is generally believed to have an influence on the protein-surface interaction but is rarely investigated systematically. Combining experimental and theoretical methodologies, we herein demonstrate the strong influence of the buffer type on protein-surface interactions. Using state of the art chromatographic experiments, we measure the interaction between individual amino acids and silica, as a reference to understand protein-surface interactions. Among all the 20 proteinogenic amino acids studied, we found that arginine (R) and lysine (K) bind most strongly to silica, a finding validated by free energy calculations. We further measured the binding of R and K at different pH in presence of two different buffers, MOPS (3-(N-morpholino)propanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane), and find dramatically different behavior. In presence of TRIS, the binding affinity of R/K increases with pH, whereas we observe an opposite trend for MOPS. These results can be understood using a multiscale modelling framework combining molecular dynamics simulation and Langmuir adsorption model. The modelling approach helps to optimize buffer conditions in various fields like biosensors, drug delivery or bio separation engineering prior to the experiment.

6.
Anal Chem ; 90(24): 14131-14136, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450897

RESUMO

Potential-controlled tensiometry is a voltage-induced method which enables measuring the contact angle between a powder bed and a liquid medium through the capillary rise method. This analytical tool provides a fine-grained technique for understanding wetting behavior of powders as well as solid surfaces in connection with the application of an electrical potential. In this work, the powder bed was brought into contact with an aluminum rod connected to a portable lightweight DAC-module (digital to analog converter) powered by a lithium-polymer battery (LiPo). The presented analytical device can be charged up to ±1000 mV. Both the power source and the DAC-module are lightweight in order to be conveniently attached to a force tensiometer without incorporating complex wiring. In this setup, we tested multiwall carbon nanotubes (MWCNT) and glassy carbon particles. An influence of the potential on the wetting behavior of glassy carbon particles is observed which demonstrates the working principle of the device. Surprisingly, no significant effect of the potential on the wetting behavior of MWCNT is indicated in the range studied. This technique can be a valuable tool to analyze the effect of changing surface properties applying electrical gradients on materials.

7.
Life (Basel) ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792650

RESUMO

This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.

8.
J Chromatogr A ; 1718: 464733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364620

RESUMO

Membrane separations offer a compelling alternative to traditional chromatographic methods by overcoming mass transport limitations. We introduce an additional degree of freedom in modulating membrane chromatography by using metalized membranes in a potential-driven process. Investigating the impact of a gold coating on membrane characteristics, the sputtered gold layer enhances the surface conductivity with stable electrochemical behavior. However, this comes at the expense of reduced permeability, wettability, and static binding capacity (∼ 474 µg g-1 of maleic acid). The designed device displayed a homogenous flow distribution, and the membrane electrodes exhibit predominantly capacitive behavior during potential application. Modulating the electrical potential during the adsorption and desorption phase strongly influenced the binding and elution behavior of anion-exchange membranes. Switching potentials between ±1.0 V vs. Ag/AgCl induces desorption, confirming the process principle. Elution efficiency reaches up to 58 % at -1.0 V vs. Ag/AgCl in the desorption phase without any alteration of the mobile phase. Increasing the potential perturbation ranging from +1.0 V to -1.0 V vs. Ag/AgCl resulted in reduced peak width and improved elution behavior, demonstrating the feasibility of electrochemically-modulated membrane chromatography. The developed process has great potential as a gentle and sustainable separation step in the biotechnological and chemical industry.


Assuntos
Cromatografia , Ouro , Eletrodos , Adsorção , Ouro/química , Biotecnologia
9.
Heliyon ; 10(6): e27640, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524575

RESUMO

Iron-containing metal-organic frameworks are promising Fenton catalysts. However, the absence of additional modifiers has proven difficult due to the low reaction rates and the inability to manipulate the catalysts. We hypothesize that the production of iron oxide NPs in the presence of a metal-organic framework will increase the rate of the Fenton reaction and lead to the production of particles that can be magnetically manipulated without changing the structure of the components. A comprehensive approach lead to a metal organic framework using the example of MIL-88b (Materials of Institute Lavoisier) modified with iron oxides NPs: formulation of iron oxide in the presence of MIL-88b and vice versa. The synthesis of MIL-88b consists of preparing a complexation compound with the respective structure and addition of terephthalic acid. The synthesis of MIL-88b facilitates to control the topology of the resulting material. Both methods for composite formulation lead to the preservation of the structure of iron oxide, however, a more technologically complex approach to obtaining MIL-88b in the presence of Fe3O4 suddenly turned out to be the more efficient for the release of iron ions.

10.
Chem Biol Interact ; 399: 111150, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39025288

RESUMO

Metal-organic framework (MOF) modified with iron oxide, Fe3O4-MOF, is a perspective drug delivery agent, enabling magnetic control and production of active hydroxyl radicals, •OH, via the Fenton reaction. This paper studies cytotoxic and radical activities of Fe-containing nanoparticles (NPs): Fe3O4-MOF and its components - bare Fe3O4 and MOF (MIL-88B). Luminous marine bacteria Photobacteriumphosphoreum were used as a model cellular system to monitor bioeffects of the NPs. Neither the NPs of Fe3O4-MOF nor MOF showed cytotoxic effects in a wide range of concentrations (<10 mg/L); while Fe3O4 was toxic at >3·10-3 mg/L. The NPs of Fe3O4 did not affect the bacterial bioluminescence enzymatic system; their toxic effect was attributed to cellular membrane processes. The integral content of reactive oxygen species (ROS) was determined using a chemiluminescence luminol assay. Bacteria mitigated excess of ROS in water suspensions of Fe3O4-MOF and MOF, maintaining bioluminescence intensity closer to the control; this resulted in low toxicity of these NPs. We estimated the activity of •OH radicals in the NPs samples with physical and chemical methods - spin capture technology (using electron paramagnetic resonance spectroscopy) and methylene blue degradation. Physico-chemical interpretation of cellular responses is provided in terms of iron content, iron ions release and •OH radical production.


Assuntos
Compostos Férricos , Radical Hidroxila , Estruturas Metalorgânicas , Photobacterium , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Photobacterium/efeitos dos fármacos , Compostos Férricos/química , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Sobrevivência Celular/efeitos dos fármacos
11.
Biotechnol J ; 18(7): e2200610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014328

RESUMO

Despite the fact that yeast is a widely used microorganism in the food, beverage, and pharmaceutical industries, the impact of viability and age distribution on cultivation performance has yet to be fully understood. For a detailed analysis of fermentation performance and physiological state, we introduced a method of magnetic batch separation to isolate daughter and mother cells from a heterogeneous culture. By binding functionalised iron oxide nanoparticles, it is possible to separate the chitin-enriched bud scars by way of a linker protein. This reveals that low viability cultures with a high daughter cell content perform similarly to a high viability culture with a low daughter cell content. Magnetic separation results in the daughter cell fraction (>95%) showing a 21% higher growth rate in aerobic conditions than mother cells and a 52% higher rate under anaerobic conditions. These findings emphasise the importance of viability and age during cultivation and are the first step towards improving the efficiency of yeast-based processes.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Fermentação , Fenômenos Magnéticos
12.
Colloids Surf B Biointerfaces ; 228: 113428, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37379701

RESUMO

Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Humanos , Dióxido de Silício , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro , Íons
13.
Biochim Biophys Acta Gen Subj ; 1867(9): 130427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454915

RESUMO

BACKGROUND & AIMS: Transport functions of albumin are of clinical and pharmacological interest and are determined by albumin's properties like posttranslational modifications or bound ligands. Both are affected in pathological conditions and in therapeutic grade albumin solutions. The term effective albumin concentration was introduced as a measure of functionally intact albumin. Our aim was to evaluate the impact of ligands and modifications with different approaches as a measure of effective albumin. APPROACH & RESULTS: We used a spin labelled fatty acid and dansylsarcosine to characterize binding properties of albumin i) prepared from plasma of patients and healthy control donors, ii) measured directly out of plasma, iii) research grade albumin, iv) in vitro modified albumin, and v) therapeutic infusion solutions before and after removal of stabilizers. Bilirubin is the main determinant for binding function in patients' albumin. In in vitro prepared albumin bound fatty acids correlated with impaired binding. Human nonmercaptalbumin1, not human nonmercaptalbumin2, showed reduced binding properties. Binding and transport function of therapeutic albumin was severely impaired and restored by filtration. Glycation of research grade albumin had no effect on the binding of dansylsarcosine and only a minor effect on fatty acid binding. CONCLUSIONS: Our results suggest that effective albumin -in terms of binding properties- is primarily determined by bound ligands and only to a minor extent by posttranslational modifications. Characterizing albumin directly from plasma better reflects the physiological situation whereas in the case of therapeutic grade albumin stabilizers should be removed to make its binding properties accessible.


Assuntos
Albuminas , Ácidos Graxos , Humanos , Ligantes , Albuminas/metabolismo , Compostos de Dansil/química , Compostos de Dansil/metabolismo
14.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631325

RESUMO

Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.

15.
Heliyon ; 9(6): e16487, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274707

RESUMO

Iron oxide nanoparticles (IONs) are of great interest in nanomedicine for imaging, drug delivery, or for hyperthermia treatment. Although many research groups have focused on the synthesis and application of IONs in nanomedicine, little is known about the influence of the surface properties on the particles' behavior in the human body. This study analyzes the impact of surface coatings (dextran, polyvinyl alcohol, polylactide-co-glycolide) on the nanoparticles' cytocompatibility, agglomeration, degradation, and the resulting oxidative stress induced by the particle degradation. All particles, including bare IONs (BIONs), are highly cytocompatible (>70%) and show no significant toxicity towards smooth muscle cells. Small-angle X-ray scattering profiles visualize the aggregation behavior of nanoparticles and yield primary particle sizes of around 20 nm for the investigated nanoparticles. A combined experimental setup of dynamic light scattering and phenanthroline assay was used to analyze the long-term agglomeration and degradation profile of IONs in simulated body fluids, allowing fast screening of multiple candidates. All particles degraded in simulated endosomal and lysosomal fluid, confirming the pH-dependent dissolution. The degradation rate decreased with the shrinking size of particles leading to a plateau. The fastest Fe2+ release could be measured for the polyvinyl-coated IONs. The analytical setup is ideal for a quick preclinical study of IONs, giving often neglected yet crucial information about the behavior and toxicity of nanoparticles in the human body. Moreover, this study allows for the development and evaluation of novel ferroptosis-inducing agents.

16.
Curr Opin Biotechnol ; 77: 102768, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930843

RESUMO

Biopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently. The DSP currently accounts for the majority of production costs of pharmaceutically relevant proteins. This short review gathers essential research over the past 3 years that addresses novel solutions to overcome this bottleneck. The overview includes promising studies in the fields of chromatography, aqueous two-phase systems, precipitation, crystallization, magnetic separation, and filtration for the purification of pharmaceutically relevant proteins.


Assuntos
Produtos Biológicos , Proteínas , Filtração , Água
17.
Biotechnol J ; 17(5): e2100577, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35085417

RESUMO

BACKGROUND: The secretion and direct capture of proteins from the extracellular medium is a promising approach for purification, thus enabling integrated bioprocesses. MAJOR RESULTS: We demonstrate the secretion of a nanobody (VHH) to the extracellular medium (EM) and its direct capture by bare, non-functionalized magnetic nanoparticles (MNPs). An ompA signal peptide for periplasmic localization, a polyglutamate-tag (E8 ) for selective MNP binding, and a factor Xa protease cleavage site were fused N-terminally to the nanobody. The extracellular production of the E8 -VHH (36 mg L-1 ) was enabled using a growth-decoupled Escherichia coli-based expression system. The direct binding of E8 -VHH to the bare magnetic nanoparticles was possible and could be drastically improved up to a yield of 88% by adding polyethylene glycol (PEG). The selectivity of the polyglutamate-tag enabled a selective elution of the E8 -VHH from the bare MNPs while raising the concentration factor (5x) and purification factor (4x) significantly. CONCLUSION: Our studies clearly show that the unique combination of a growth-decoupled E. coli secretion system, the polyglutamate affinity tag, non-functionalized magnetic nanoparticles, and affinity magnetic precipitation is an innovative and novel way to capture and concentrate nanobodies.


Assuntos
Nanopartículas de Magnetita , Anticorpos de Domínio Único , Escherichia coli/genética , Escherichia coli/metabolismo , Magnetismo , Ácido Poliglutâmico/metabolismo
18.
Nanoscale Adv ; 3(22): 6438-6445, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36133489

RESUMO

Nanoparticles are acquiring an ever increasing role in analytical technologies for enhanced applications such as signalling of hazardous dyes. One challenge for the synthesis of hybrid nanomaterials is to control their shape, size and properties. The colloidal and interfacial properties of initial nanoparticles are decisive for the formation, growth and characteristics of nanohybrids. Our objective is to combine the advantages of iron oxide nanoparticles for magnetic separation with nanoscale gold for a surface enhanced Raman scattering (SERS) effect which could be used e.g. for improved detection of dye molecules. We synthesized iron oxide nanoparticles (∼10 nm) with a high saturation magnetization of around 80 Am2 kg-1 and coupled nanoscale gold to these particles. The focus was set in testing multiple approaches to combine these two materials with the goal of understanding and discussing the effect of the colloidal stability of iron oxide nanoparticles on the properties of the hybrid material. Stability is a seldom addressed issue; however, it plays a critical role for guaranteeing a homogeneous distribution of the gold on the iron oxide surface. We characterized the produced materials with UV/Vis spectroscopy, dynamic light scattering, and transmission electron microscopy, and their capability to enhance Raman signals is investigated. The seed-mediated growth method of oleate and PEG-stabilized magnetic particles yielded the best enhancement of Raman scattering for identification of the dye Rhodamin 6G. This approach can be used to couple gold nanoparticles to other surfaces and microfluidic devices. The presented method might pave the way to further applications in diagnostics or also in environmental approaches and beyond.

19.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923229

RESUMO

New drug delivery systems are a potential solution for administering drugs to reduce common side effects of traditional methods, such as in cancer therapy. Iron oxide nanoparticles (IONs) can increase the drugs' biological activity through high binding efficiency and magnetically targeted drug delivery. Understanding the adsorption and release process of a drug to the carrier material plays a significant role in research to generate an applicable and controlled drug delivery system. This contribution focuses on the binding patterns of the peptide lasioglossin III from bee venom on bare IONs. Lasioglossin has a high antimicrobial behavior and due to its cationic properties, it has high binding potential. Considering the influence of pH, the buffer type, the particle concentration, and time, the highest drug loading of 22.7% is achieved in phosphate-buffered saline. Analysis of the desorption conditions revealed temperature and salt concentration sensitivity. The nanoparticles and peptide-ION complexes are analyzed with dynamic light scattering, zeta potential, and infrared spectroscopy. Additionally, cytotoxicity experiments performed on Escherichia coli show higher antimicrobial activity of bound lasioglossin than of the free peptide. Therefore, bare IONs are an interesting platform material for the development of drug-delivery carriers for cationic peptides.

20.
ACS Appl Mater Interfaces ; 13(17): 20830-20844, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33884871

RESUMO

On the nanoscale, iron oxides can be used for multiple applications ranging from medical treatment to biotechnology. We aimed to utilize the specific properties of these nanoparticles for new process concepts in flotation. Magnetic nanoparticles were synthesized by alkaline coprecipitation, leading to a primary particle size of 9 nm, and coated with oleate. The nanomaterial was characterized for its superparamagnetism and its colloidal stability at different ionic strengths, with and without an external magnetic field. The nanomaterial was used for model experiments on magnetic carrier flotation of microplastic particles, based on magnetically induced heteroagglomeration. We were able to demonstrate the magnetically induced aggregation of the nanoparticles which allows for new flotation strategies. Since the nanomaterial has zero remanent magnetization, the agglomeration is reversible which facilitates the process control. Magnetic carrier flotation based on iron oxide nanoparticles can pave the way to promising new recycling processes for microplastic wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA