Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 89(7): 3630-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589653

RESUMO

UNLABELLED: Viral semaphorins are semaphorin 7A (sema7A) mimics found in pox- and herpesviruses. Among herpesviruses, semaphorins are encoded by gammaherpesviruses of the Macavirus genus only. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus that persistently infects wildebeest asymptomatically but induces malignant catarrhal fever (MCF) when transmitted to several species of susceptible ruminants and the rabbit model. MCF is caused by the activation/proliferation of latently infected T lymphocytes. Viral semaphorins have been suggested to mediate immune evasion mechanisms and/or directly alter host T cell function. We studied AlHV-sema, the viral semaphorin encoded by the A3 gene of AlHV-1. Phylogenetic analyses revealed independent acquisition of pox- and herpesvirus semaphorins, suggesting that these proteins might have distinct functions. AlHV-sema showed a predicted three-dimensional structure very similar to sema7A and conserved key residues in sema7A-plexinC1 interaction. Expression analyses revealed that AlHV-sema is a secreted 93-kDa glycoprotein expressed during the early phase of virus replication. Purified AlHV-sema was able to bind to fibroblasts and dendritic cells and induce F-actin condensation and cell retraction through a plexinC1 and Rho/cofilin-dependent mechanism. Cytoskeleton rearrangement was further associated with inhibition of phagocytosis by dendritic cells and migration to the draining lymph node. Next, we generated recombinant viruses and demonstrated that the lack of A3 did not significantly affect virus growth in vitro and did not impair MCF induction and associated lymphoproliferative lesions. In conclusion, AlHV-sema has immune evasion functions through mechanisms similar to poxvirus semaphorin but is not directly involved in host T cell activation during MCF. IMPORTANCE: Whereas most poxviruses encode viral semaphorins, semaphorin-like genes have only been identified in few gammaherpesviruses belonging to the Macavirus genus. Alcelaphine herpesvirus 1 (AlHV-1) is a macavirus carried asymptomatically by wildebeest but induces a latency-associated lymphoproliferative disease of T lymphocytes in various ruminant species, namely, malignant catarrhal fever (MCF). Viral semaphorins have been hypothesized to have immune evasion functions and/or be involved in activating latently infected T cells. We present evidence that the viral semaphorin AlHV-sema inhibits dendritic cell phagocytosis and migration to the draining lymph node, both being indispensable mechanisms for protective antiviral responses. Next, we engineered recombinant viruses unable to express AlHV-sema and demonstrated that this protein is dispensable for the induction of MCF. In conclusion, this study suggests that herpesvirus and poxvirus semaphorins have independently evolved similar functions to thwart the immune system of the host while AlHV-sema is not directly involved in MCF-associated T-cell activation.


Assuntos
Células Dendríticas/imunologia , Gammaherpesvirinae/imunologia , Interações Hospedeiro-Patógeno , Linfócitos/fisiologia , Febre Catarral Maligna/virologia , Fagocitose , Semaforinas/imunologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Citoesqueleto/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/virologia , Fibroblastos/efeitos dos fármacos , Gammaherpesvirinae/genética , Perfilação da Expressão Gênica , Humanos , Evasão da Resposta Imune , Febre Catarral Maligna/imunologia , Filogenia , Conformação Proteica , Semaforinas/química , Semaforinas/genética , Homologia de Sequência de Aminoácidos
2.
J Immunol ; 192(10): 4510-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24740508

RESUMO

The existence of conventional dendritic cells (cDCs) has not yet been demonstrated outside mammals. In this article, we identified bona fide cDCs in chicken spleen. Comparative profiling of global and of immune response gene expression, morphology, and T cell activation properties show that cDCs and macrophages (MPs) exist as distinct mononuclear phagocytes in the chicken, resembling their human and mouse cell counterparts. With computational analysis, core gene expression signatures for cDCs, MPs, and T and B cells across the chicken, human, and mouse were established, which will facilitate the identification of these subsets in other vertebrates. Overall, this study, by extending the newly uncovered cDC and MP paradigm to the chicken, suggests that these two phagocyte lineages were already in place in the common ancestor of reptiles (including birds) and mammals in evolution. It opens avenues for the design of new vaccines and nutraceuticals that are mandatory for the sustained supply of poultry products in the expanding human population.


Assuntos
Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Animais , Linhagem Celular , Galinhas , Células Dendríticas/citologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Linfócitos T/citologia , Linfócitos T/imunologia
3.
J Immunol ; 193(12): 5883-93, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25385823

RESUMO

Swine skin is one of the best structural models for human skin, widely used to probe drug transcutaneous passage and to test new skin vaccination devices. However, little is known about its composition in immune cells, and among them dendritic cells (DC), that are essential in the initiation of the immune response. After a first seminal work describing four different DC subpopulations in pig skin, we hereafter deepen the characterization of these cells, showing the similarities between swine DC subsets and their human counterparts. Using comparative transcriptomic study, classical phenotyping as well as in vivo and in vitro functional studies, we show that swine CD163(pos) dermal DC (DDC) are transcriptomically similar to the human CD14(pos) DDC. CD163(pos) DDC are recruited in inflamed skin, they migrate in inflamed lymph but they are not attracted toward CCL21, and they modestly activate allogeneic CD8 T cells. We also show that CD163(low) DDC are transcriptomically similar to the human CD1a(pos) DDC. CD163(low) DDC migrate toward CCL21, they activate allogeneic CD8 and CD4 T cells and, like their potential human lung counterpart, they skew CD4 T cells toward a Th17 profile. We thus conclude that swine skin is a relevant model for human skin vaccination.


Assuntos
Quimiotaxia/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Animais , Antígenos CD1/genética , Antígenos CD1/metabolismo , Antígenos de Superfície/metabolismo , Quimiotaxia/genética , Citocinas/biossíntese , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fenótipo , Pele/imunologia , Suínos
4.
Proc Natl Acad Sci U S A ; 109(31): 12680-5, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22723360

RESUMO

The constant heavy chain (CH1) domain affects antibody affinity and fine specificity, challenging the paradigm that only variable regions contribute to antigen binding. To investigate the role of the CH1 domain, we constructed IgA2 from the broadly neutralizing anti-HIV-1 2F5 IgG1, and compared 2F5 IgA2 and IgG binding affinity and functional activities. We found that 2F5 IgA2 bound to the gp41 membrane proximal external region with higher affinity than IgG1. Functionally, compared with IgG1, 2F5 IgA2 more efficiently blocked HIV-1 transcytosis across epithelial cells and CD4(+) cell infection by R5 HIV-1. The 2F5 IgG1 and IgA2 acted synergistically to fully block HIV-1 transfer from Langerhans to autologous CD4(+) T cells and to inhibit CD4(+) T-cell infection. Epitope mapping performed by screening a random peptide library and in silico docking modeling suggested that along with the 2F5 IgG canonical ELDKWA epitope on gp41, the IgG1 recognized an additional 3D-conformational epitope on the gp41 C-helix. In contrast, the IgA2 epitope included a unique conformational motif on the gp41 N-helix. Overall, the CH1 region of 2F5 contributes to shape its epitope specificity, antibody affinity, and functional activities. In the context of sexually transmitted infections such as HIV-1/AIDS, raising a mucosal IgA-based vaccine response should complement an IgG-based vaccine response in blocking HIV-1 transmission.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Síndrome da Imunodeficiência Adquirida/terapia , Síndrome da Imunodeficiência Adquirida/transmissão , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Epitopos/genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Estrutura Secundária de Proteína , Transcitose/efeitos dos fármacos , Transcitose/imunologia
5.
Virologie (Montrouge) ; 19(4): 178-186, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065904

RESUMO

Upon viral infection, infected cells mount an antiviral response that culminates with the production of type I IFN (IFN-α/ß) and other pro-inflammatory cytokines that control the infection. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus, but the underlying mechanisms responsible for this event remained unknown until recently. This review describes the recent advances in the identification of cellular sensors and signalling pathways involved in this process. In non-hematopoietic cells, expression of IFN-ß in response to BTV infection depends on the activation of the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). In contrast, induction of IFN-α/ß synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). In order to counteract this antiviral response, most of viruses have elaborated mechanisms to hinder its action. This review also describes the ability of BTV to interfere with the IFN pathway and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.

6.
J Virol ; 87(14): 8241-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658442

RESUMO

Upon infection with Bluetongue virus (BTV), an arthropod-borne virus, type I interferon (IFN-I) is produced in vivo and in vitro. IFN-I is essential for the establishment of an antiviral cellular response, and most if not all viruses have elaborated strategies to counteract its action. In this study, we assessed the ability of BTV to interfere with IFN-I synthesis and identified the nonstructural viral protein NS3 as an antagonist of the IFN-I system.


Assuntos
Vírus Bluetongue/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/antagonistas & inibidores , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/biossíntese , Luciferases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/farmacologia
7.
J Virol ; 87(16): 9333-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23785206

RESUMO

Human and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases.


Assuntos
Sangue/imunologia , Vírus Bluetongue/imunologia , Bluetongue/imunologia , Células Dendríticas/imunologia , Perfilação da Expressão Gênica , Linfonodos/imunologia , Animais , Células Cultivadas , Masculino , Ovinos
8.
Immunol Rev ; 234(1): 177-98, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20193019

RESUMO

During evolution, vertebrates have developed an adaptive immune system able to cope with a variety of pathogens. Dendritic cells (DCs) are central to this process. DCs integrate information derived from pathogens or endogenous danger signals and convey them to T lymphocytes. Most of the present knowledge on DCs was generated in mice or by using human DCs differentiated in vitro from monocytes. In both species, several DC subsets have been identified in vivo based on differences in their phenotypes, anatomical locations or functions. In mice, protective immunity against intracellular pathogens or tumors can be induced most efficiently by targeting antigens to the CD8 alpha(+) DCs, a subset of DCs which resides in lymphoid tissues and is especially efficient at cross-presenting exogenous antigens to CD8(+) T lymphocytes. In contrary, harnessing human DC subsets for medical purposes is currently hampered by insufficient knowledge about these cells. To overcome this cognitive gap, we are using comparative genomics as a tool for designing hypotheses and experiments to further characterize DC subset functions and their molecular control, including the investigation of the functional equivalences that might exist between human and mouse DC subsets.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Genômica , Animais , Antígenos CD1 , Antígenos de Superfície/imunologia , Antígeno CD11b/imunologia , Antígenos CD8/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Doenças Transmissíveis/imunologia , Perfilação da Expressão Gênica , Genômica/métodos , Glicoproteínas , Humanos , Camundongos , Fenótipo , Especificidade da Espécie
9.
Front Immunol ; 15: 1365964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585271

RESUMO

Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.


Assuntos
Transplante de Pulmão , Suínos , Animais , Perfusão/métodos , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Diálise Renal , Pulmão/fisiologia
10.
J Virol ; 86(21): 11789-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915805

RESUMO

Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/ß]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-ß in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-ß and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-ß. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-ß was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-ß induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.


Assuntos
Vírus Bluetongue/imunologia , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Interferon beta/biossíntese , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Receptores Imunológicos
11.
J Virol ; 86(10): 5817-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438548

RESUMO

Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/ß) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/ß production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/ß induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/ß in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/ß. BTV replication in pDCs was not mandatory for IFN-α/ß production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/ß required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/ß induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/ß in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/virologia , Feminino , Imunidade Inata , Interferon Tipo I/genética , Glicoproteínas de Membrana , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1 , Ovinos/imunologia , Ovinos/virologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
12.
Int Immunol ; 24(1): 59-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194283

RESUMO

Dendritic cells (DCs) migrating from peripheral tissues at steady state are considered the most efficient antigen-presenting cells (APCs) involved in the induction of peripheral T-cell tolerance via self-antigen presentation on MHC class II molecules. However, difficulties in obtaining sufficient numbers of such DCs have precluded previous analyses of their natural MHC class II peptidome in laboratory animals or humans. Here, we overcome this difficulty by collecting the large quantities of sheep DCs that migrate from the skin via the afferent lymphatics at steady state to the draining lymph node. We compared the repertoire of MHC class II-bound peptides from afferent lymph DCs with autologous APCs derived from peripheral blood. A large fraction of the MHC class II peptidome from skin DCs was derived from membrane-recycling proteins (59%) and from proteins of the antigen presentation machinery (50%), whereas these types of peptides constituted a more limited fraction in blood APCs (21 and 11%, respectively). One sheep cytokeratin peptide was identified in the skin DC peptidome indicating active processing of epithelium-derived antigens. Conversely, peptides derived from cytosolic and soluble antigens of the extracellular milieu were more represented in blood APCs than skin DCs. The biased peptidome of skin-migrated DCs indicates that these cells express a peptide repertoire for the generation of self-reactive and/or regulatory T cells mainly directed toward DC molecules from internal and external membranes and to a lesser extent toward antigens of the extracellular milieu, including some tissue-specific peptides.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Pele/imunologia , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Autoantígenos/imunologia , Autoantígenos/metabolismo , Cromatografia Líquida de Alta Pressão , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Genótipo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfa/imunologia , Linfa/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteômica , Ovinos , Pele/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
PLoS One ; 18(5): e0285724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253049

RESUMO

Lung transplantation is the only curative option for end-stage chronic respiratory diseases. However the survival rate is only about 50% at 5 years. Although experimental evidences have shown that innate allo-responses impact on the clinical outcome, the knowledge of the involved mechanisms involved is limited. We established a cross-circulatory platform to monitor the early recruitment and activation of immune cells in an extracorporeal donor lung by coupling blood perfusion to cell mapping with a fluorescent marker in the pig, a commonly-used species for lung transplantation. The perfusing pig cells were easily detectable in lung cell suspensions, in broncho-alveolar lavages and in different areas of lung sections, indicating infiltration of the organ. Myeloid cells (granulocytes and monocytic cells) were the dominant recruited subsets. Between 6 and 10 h of perfusion, recruited monocytic cells presented a strong upregulation of MHC class II and CD80/86 expression, whereas alveolar macrophages and donor monocytic cells showed no significant modulation of expression. This cross-circulation model allowed us to monitor the initial encounter between perfusing cells and the lung graft, in an easy, rapid, and controllable manner, to generate robust information on innate response and test targeted therapies for improvement of lung transplantation outcome.


Assuntos
Transplante de Pulmão , Animais , Suínos , Pulmão , Genes MHC da Classe II , Perfusão
14.
Front Immunol ; 14: 1281546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942330

RESUMO

Introduction: Lung transplantation often results in primary and/or chronic dysfunctions that are related to early perioperative innate allo-responses where myeloid subsets play a major role. Corticosteroids are administered upon surgery as a standard-of-care but their action on the different myeloid cell subsets in that context is not known. Methods: To address this issue, we used a cross-circulatory platform perfusing an extracorporeal lung coupled to cell mapping in the pig model, that enabled us to study the recruited cells in the allogeneic lung over 10 hours. Results: Myeloid cells, i.e. granulocytes and monocytic cells including classical CD14pos and non-classical/intermediate CD16pos cells, were the dominantly recruited subsets, with the latter upregulating the membrane expression of MHC class II and CD80/86 molecules. Whereas corticosteroids did not reduce the different cell subset recruitment, they potently dampened the MHC class II and CD80/86 expression on monocytic cells and not on alveolar macrophages. Besides, corticosteroids induced a temporary and partial anti-inflammatory gene profile depending on cytokines and monocyte/macrophage subsets. Discussion: This work documents the baseline effects of the standard-of-care corticosteroid treatment for early innate allo-responses. These insights will enable further optimization and improvement of lung transplantation outcomes.


Assuntos
Transplante de Pulmão , Monócitos , Animais , Suínos , Monócitos/metabolismo , Células Mieloides , Macrófagos , Corticosteroides/metabolismo
15.
Front Immunol ; 14: 1142228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465668

RESUMO

In response to the increasing demand for lung transplantation, ex vivo lung perfusion (EVLP) has extended the number of suitable donor lungs by rehabilitating marginal organs. However despite an expanding use in clinical practice, the responses of the different lung cell types to EVLP are not known. In order to advance our mechanistic understanding and establish a refine tool for improvement of EVLP, we conducted a pioneer study involving single cell RNA-seq on human lungs declined for transplantation. Functional enrichment analyses were performed upon integration of data sets generated at 4 h (clinical duration) and 10 h (prolonged duration) from two human lungs processed to EVLP. Pathways related to inflammation were predicted activated in epithelial and blood endothelial cells, in monocyte-derived macrophages and temporally at 4 h in alveolar macrophages. Pathways related to cytoskeleton signaling/organization were predicted reduced in most cell types mainly at 10 h. We identified a division of labor between cell types for the selected expression of cytokine and chemokine genes that varied according to time. Immune cells including CD4+ and CD8+ T cells, NK cells, mast cells and conventional dendritic cells displayed gene expression patterns indicating blunted activation, already at 4 h in several instances and further more at 10 h. Therefore despite inducing inflammatory responses, EVLP appears to dampen the activation of major lung immune cell types, what may be beneficial to the outcome of transplantation. Our results also support that therapeutics approaches aiming at reducing inflammation upon EVLP should target both the alveolar and vascular compartments.


Assuntos
Linfócitos T CD8-Positivos , Transplante de Pulmão , Humanos , Perfusão/métodos , Células Endoteliais , Transplante de Pulmão/métodos , Pulmão/fisiologia , Inflamação
16.
J Vasc Interv Radiol ; 23(6): 809-817.e2, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22498170

RESUMO

PURPOSE: To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. MATERIALS AND METHODS: The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. RESULTS: Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). CONCLUSIONS: The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies.


Assuntos
Vasos Sanguíneos/metabolismo , Neoplasias Musculares/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Biomarcadores Tumorais/metabolismo , Vasos Sanguíneos/patologia , Linhagem Celular Tumoral , Genótipo , Imuno-Histoquímica , Neoplasias Musculares/irrigação sanguínea , Neoplasias Musculares/genética , Neoplasias Musculares/patologia , Necrose , Neoplasias Císticas, Mucinosas e Serosas/irrigação sanguínea , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neovascularização Patológica , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Coelhos , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
17.
J Immunol ; 185(6): 3313-25, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20702727

RESUMO

The mouse lymphoid organ-resident CD8alpha(+) dendritic cell (DC) subset is specialized in Ag presentation to CD8(+) T cells. Recent evidence shows that mouse nonlymphoid tissue CD103(+) DCs and human blood DC Ag 3(+) DCs share similarities with CD8alpha(+) DCs. We address here whether the organization of DC subsets is conserved across mammals in terms of gene expression signatures, phenotypic characteristics, and functional specialization, independently of the tissue of origin. We study the DC subsets that migrate from the skin in the ovine species that, like all domestic animals, belongs to the Laurasiatheria, a distinct phylogenetic clade from the supraprimates (human/mouse). We demonstrate that the minor sheep CD26(+) skin lymph DC subset shares significant transcriptomic similarities with mouse CD8alpha(+) and human blood DC Ag 3(+) DCs. This allowed the identification of a common set of phenotypic characteristics for CD8alpha-like DCs in the three mammalian species (i.e., SIRP(lo), CADM1(hi), CLEC9A(hi), CD205(hi), XCR1(hi)). Compared to CD26(-) DCs, the sheep CD26(+) DCs show 1) potent stimulation of allogeneic naive CD8(+) T cells with high selective induction of the Ifngamma and Il22 genes; 2) dominant efficacy in activating specific CD8(+) T cells against exogenous soluble Ag; and 3) selective expression of functional pathways associated with high capacity for Ag cross-presentation. Our results unravel a unifying definition of the CD8alpha(+)-like DCs across mammalian species and identify molecular candidates that could be used for the design of vaccines applying to mammals in general.


Assuntos
Antígenos CD8/biossíntese , Sequência Conservada , Células Dendríticas/imunologia , Perfilação da Expressão Gênica/métodos , Linfa/citologia , Linfa/imunologia , Animais , Antígenos CD8/fisiologia , Células Cultivadas , Células Dendríticas/metabolismo , Dipeptidil Peptidase 4/biossíntese , Feminino , Humanos , Tolerância Imunológica , Linfa/metabolismo , Camundongos , Carneiro Doméstico , Pele/citologia , Pele/imunologia , Pele/metabolismo , Especificidade da Espécie
18.
Transplantation ; 106(5): 979-987, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468431

RESUMO

BACKGROUND: Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However, the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines, and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS: We analyzed the physiological, metabolic, and genome-wide response of lungs undergoing a 6-h EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS: Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles, which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS: Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialyzable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.


Assuntos
Transplante de Pulmão , Preservação de Órgãos , Animais , Humanos , Pulmão , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Perfusão/métodos , Diálise Renal , Suínos
19.
Eur J Immunol ; 40(8): 2089-94, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20853491

RESUMO

Recent studies have identified several DC subsets within the mouse skin and showed that functional specialization exists among them. This Viewpoint summarizes recent data on functional specialization of skin DC subsets and integrates this knowledge into a unifying DC classification that emphasizes the similarities between the DC subsets found in both lymphoid and nonlymphoid tissues of several mammalian species.


Assuntos
Células de Langerhans/classificação , Tecido Linfoide/patologia , Pele/patologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Humanos , Células de Langerhans/patologia , Camundongos
20.
Vet Res ; 42: 96, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864344

RESUMO

In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare.Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context.Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents.The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes.


Assuntos
Doenças dos Animais , Experimentação Animal , Pesquisa Biomédica , Gado , Doenças dos Animais/epidemiologia , Doenças dos Animais/etiologia , Experimentação Animal/normas , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Humanos , Saúde Pública , Zoonoses/epidemiologia , Zoonoses/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA