Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612891

RESUMO

The domestication process of the common bean gave rise to six different races which come from the two ancestral genetic pools, the Mesoamerican (Durango, Jalisco, and Mesoamerica races) and the Andean (New Granada, Peru, and Chile races). In this study, a collection of 281 common bean landraces from Chile was analyzed using a 12K-SNP microarray. Additionally, 401 accessions representing the rest of the five common bean races were analyzed. A total of 2543 SNPs allowed us to differentiate a genetic group of 165 accessions that corresponds to the race Chile, 90 of which were classified as pure accessions, such as the bean types 'Tórtola', 'Sapito', 'Coscorrón', and 'Frutilla'. Our genetic analysis indicates that the race Chile has a close relationship with accessions from Argentina, suggesting that nomadic ancestral peoples introduced the bean seed to Chile. Previous archaeological and genetic studies support this hypothesis. Additionally, the low genetic diversity (π = 0.053; uHe = 0.53) and the negative value of Tajima' D (D = -1.371) indicate that the race Chile suffered a bottleneck and a selective sweep after its introduction, supporting the hypothesis that a small group of Argentine bean genotypes led to the race Chile. A total of 235 genes were identified within haplotype blocks detected exclusively in the race Chile, most of them involved in signal transduction, supporting the hypothesis that intracellular signaling pathways play a fundamental role in the adaptation of organisms to changes in the environment. To date, our findings are the most complete investigation associated with the origin of the race Chile of common bean.


Assuntos
Phaseolus , Phaseolus/genética , Chile , Argentina , Domesticação , Pool Gênico
2.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743237

RESUMO

Chickpea is one of the most important pulse crops worldwide, being an excellent source of protein. It is grown under rain-fed conditions averaging yields of 1 t/ha, far from its potential of 6 t/ha under optimum conditions. The combined effects of heat, cold, drought, and salinity affect species productivity. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. A large collection of nearly 100,000 chickpea accessions is the basis of breeding programs, and important advances have been achieved through conventional breeding, such as germplasm introduction, gene/allele introgression, and mutagenesis. In parallel, advances in molecular biology and high-throughput sequencing have allowed the development of specific molecular markers for the genus Cicer, facilitating marker-assisted selection for yield components and abiotic tolerance. Further, transcriptomics, proteomics, and metabolomics have permitted the identification of specific genes, proteins, and metabolites associated with tolerance to abiotic stress of chickpea. Furthermore, some promising results have been obtained in studies with transgenic plants and with the use of gene editing to obtain drought-tolerant chickpea. Finally, we propose some future lines of research that may be useful to obtain chickpea genotypes tolerant to abiotic stress in a scenario of climate change.


Assuntos
Cicer , Cicer/fisiologia , Mudança Climática , Secas , Melhoramento Vegetal , Estresse Fisiológico/genética
3.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163956

RESUMO

The Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection. The grain yield was decreased by up to 25 times in 2019. The concentration of biochanin A was up to 3.2 times higher in samples from the second season (water stress). This study demonstrates that water stress induces biosynthesis of biochanin A. However, positive changes in the biochanin A concentration are overshadowed by negative changes in the grain yield. Therefore, water stress, which may be worsened by climate change in the upcoming years, may jeopardize both the production of chickpeas and the supply of biochanin A, a bioactive compound that can be used to produce dietary supplements and/or nutraceuticals.


Assuntos
Cicer/química , Cicer/metabolismo , Desidratação/metabolismo , Chile , Cromatografia Líquida , Cicer/crescimento & desenvolvimento , Mudança Climática/economia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flavonoides/metabolismo , Espectrometria de Massas , Fenóis/análise , Sementes/química
4.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477281

RESUMO

A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.


Assuntos
Antioxidantes/química , Inibidores Enzimáticos/química , Flavonoides/química , Triticum/química , Animais , Humanos , Estudos Prospectivos
5.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987666

RESUMO

Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Triticum/genética , Biomarcadores , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível/genética
6.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630023

RESUMO

Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.


Assuntos
Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Lipoxigenase/genética , Pigmentação/genética , Triticum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Lipoxigenase/metabolismo , Região do Mediterrâneo , Locos de Características Quantitativas , Triticum/enzimologia
7.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146372

RESUMO

Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Cicer/química , Glycine max/química , Isoflavonas/análise , Compostos Fitoquímicos/análise , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Isoflavonas/química , Isoflavonas/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
8.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404239

RESUMO

Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.


Assuntos
Manipulação de Alimentos , Valor Nutritivo , Fenóis/química , Plantas/química , Opinião Pública , Vias Biossintéticas/genética , Descontaminação , Contaminação de Alimentos , Inocuidade dos Alimentos , Humanos , Plantas/genética , Plantas/metabolismo
9.
Front Plant Sci ; 15: 1305196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550292

RESUMO

Wild emmer (Triticum turgidum ssp. dicoccoides) genotypes were studied for their high-nutritional value and good tolerance to various types of stress; for this reason, several QTL (quantitative trait loci) studies have been conducted to find favorable alleles to be introgressed into modern wheat cultivars. Given the complexity of the QTL nature, their interaction with the environment, and other QTLs, a small number of genotypes have been used in wheat breeding programs. Meta-QTL (MQTL) analysis helps to simplify the existing QTL information, identifying stable genomic regions and possible candidate genes for further allele introgression. The study aimed to identify stable QTL regions across different environmental conditions and genetic backgrounds using the QTL information of the past 14 years for different traits in wild emmer based upon 17 independent studies. A total of 41 traits were classified as quality traits (16), mineral composition traits (11), abiotic-related traits (13), and disease-related traits (1). The analysis revealed 852 QTLs distributed across all 14 chromosomes of wild emmer, with an average of 61 QTLs per chromosome. Quality traits had the highest number of QTLs (35%), followed by mineral content (33%), abiotic-related traits (28%), and disease-related traits (4%). Grain protein content (GPC) and thousand kernel weight (TKW) were associated with most of the QTLs detected. A total of 43 MQTLs were identified, simplifying the information, and reducing the average confidence interval (CI) from 22.6 to 4.78 cM. These MQTLs were associated with multiple traits across different categories. Nine candidate genes were identified for several stable MQTLs, potentially contributing to traits such as quality, mineral content, and abiotic stress resistance. These genes play essential roles in various plant processes, such as carbohydrate metabolism, nitrogen assimilation, cell wall biogenesis, and cell wall extensibility. Overall, this study underscores the importance of considering MQTL analysis in wheat breeding programs, as it identifies stable genomic regions associated with multiple traits, offering potential solutions for improving wheat varieties under diverse environmental conditions.

10.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592828

RESUMO

Common bean (Phaseolus vulgaris L.) is the primary grain legume cultivated worldwide for direct human consumption due to the high nutritional value of its seeds and pods. The high protein content of common beans highlights it as the most promising source of plant-based protein for the food industry. Additionally, landraces of common bean have great variability in nutritional traits, which is necessary to increase the nutritional quality of elite varieties. Therefore, the main objective of this study was to nutritionally characterize 23 Chilean landraces and 5 commercial varieties of common bean to identify genotypes with high nutritional value that are promising for the food industry and for genetic improvement programs. The landrace Phv23 ('Palo') was the most outstanding with high concentrations of minerals such as P (7.53 g/kg), K (19.8 g/kg), Mg (2.43 g/kg), Zn (52.67 mg/kg), and Cu (13.67 mg/kg); essential amino acids (364.8 mg/g protein); and total proteins (30.35 g/100 g seed). Additionally, the landraces Phv9 ('Cimarrón'), Phv17 ('Juanita'), Phv3 ('Araucano'), Phv8 ('Cabrita/Señorita'), and Phv4 ('Arroz') had a high protein content. The landrace Phv24 ('Peumo') stood out for its phenolic compounds (TPC = 218.1 mg GA/100 g seed) and antioxidant activity (ORAC = 22,167.9 µmol eq trolox/100 g extract), but it has moderate to low mineral and protein concentrations. In general, the concentration of nutritional compounds in some Chilean landraces was significantly different from the commercial varieties, highlighting their high nutritional value and their potential use for the food industry and for genetic improvement purposes.

11.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616246

RESUMO

Common bean is one of the most important legumes produced and consumed worldwide because it is a highly valuable food for the human diet. However, its production is mainly carried out by small farmers, who obtain average grain yields below the potential yield of the species. In this sense, numerous mapping studies have been conducted to identify quantitative trait loci (QTL) associated with yield components in common bean. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies. Consequently, the objective of this study was to perform a MQTL analysis to identify the most reliable and stable genomic regions associated with yield-related traits of common bean. A total of 667 QTL associated with yield-related traits reported in 21 different studies were collected. A total of 42 MQTL associated with yield-related traits were identified, in which the average confidence interval (CI) of the MQTL was 3.41 times lower than the CIs of the original QTL. Most of the MQTL (28) identified in this study contain QTL associated with yield and phenological traits; therefore, these MQTL can be useful in common bean breeding programs. Finally, a total of 18 candidate genes were identified and associated with grain yield within these MQTL, with functions related to ubiquitin ligase complex, response to auxin, and translation elongation factor activity.

12.
Front Plant Sci ; 13: 984269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147234

RESUMO

Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change.

13.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501323

RESUMO

Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.

14.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740036

RESUMO

Chickpeas are rich sources of bioactive compounds such as phenolic acids, flavonoids, and isoflavonoids. However, the contribution of insoluble-bound phenolics to their antioxidant properties remains unclear. Four varieties of chickpeas were evaluated for the presence of soluble (free and esterified) and insoluble-bound phenolics as well as their antiradical activity, reducing power and inhibition of peroxyl-induced cytotoxicity in human HuH-7 cells. In general, the insoluble-bound fraction showed a higher total phenolic content. Phenolic acids, flavonoids, and isoflavonoids were identified and quantified by UPLC-MS/MS. Taxifolin was identified for the first time in chickpeas. However, m-hydroxybenzoic acid, taxifolin, and biochanin A were the main phenolics found. Biochanin A was mostly found in the free fraction, while m-hydroxybenzoic acid was present mainly in the insoluble-bound form. The insoluble-bound fraction made a significant contribution to the reducing power and antiradical activity towards peroxyl radical. Furthermore, all extracts decreased the oxidative damage of human HuH-7 cells induced by peroxyl radicals, thus indicating their hepatoprotective potential. This study demonstrates that the antioxidant properties and bioactive potential of insoluble-bound phenolics of chickpeas should not be neglected.

15.
Plants (Basel) ; 10(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34451733

RESUMO

The runner bean is the third most economically important Phaseolus species, which is cultivated on small-scale agriculture for the production of immature pods or to obtain dry seeds. However, despite the economic importance and agronomic potential of this species, the runner bean has been little studied from the genetic standpoint. Therefore, the main objective of this study was to characterize ten selected lines of runner bean obtained from Central (Santiago) and Southern (Valdivia and Villarica) Chile based on morphological and agronomic traits. In addition, the genetic variability of these lines was determined using 12 Inter-Simple Sequence Repeat (ISSR) markers to evaluate the potential of this germplasm for breeding and commercial purposes. As a result, the lines from Central Chile were characterized, and had a higher number of pods per plant compared to the Southern lines, although the size and weight of their seeds were lower. Moreover, a low level of genetic diversity (He = 0.251) was encountered in this population. Finally, this is one of the first studies that generate relevant and novel information on the morphological, agronomic and genetic characterization of the P. coccineus germplasm present in Chile.

16.
Plant Mol Biol ; 73(1-2): 105-18, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20047028

RESUMO

Seeds of most cultivated varieties of lettuce (Lactuca sativa L.) fail to germinate at warm temperatures (i.e., above 25-30 degrees C). Seed priming (controlled hydration followed by drying) alleviates this thermoinhibition by increasing the maximum germination temperature. We conducted a quantitative trait locus (QTL) analysis of seed germination responses to priming using a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. Priming significantly increased the maximum germination temperature of the RIL population, and a single major QTL was responsible for 47% of the phenotypic variation due to priming. This QTL collocated with Htg6.1, a major QTL from UC96US23 associated with high temperature germination capacity. Seeds of three near-isogenic lines (NILs) carrying an Htg6.1 introgression from UC96US23 in a Salinas genetic background exhibited synergistic increases in maximum germination temperature in response to priming. LsNCED4, a gene encoding a key enzyme (9-cis-epoxycarotinoid dioxygenase) in the abscisic acid biosynthetic pathway, maps precisely with Htg6.1. Expression of LsNCED4 after imbibition for 24 h at high temperature was greater in non-primed seeds of Salinas, of a second cultivar (Titan) and of NILs containing Htg6.1 compared to primed seeds of the same genotypes. In contrast, expression of genes encoding regulated enzymes in the gibberellin and ethylene biosynthetic pathways (LsGA3ox1 and LsACS1, respectively) was enhanced by priming and suppressed by imbibition at elevated temperatures. Developmental and temperature regulation of hormonal biosynthetic pathways is associated with seed priming effects on germination temperature sensitivity.


Assuntos
Germinação , Temperatura Alta , Lactuca/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Ácido Abscísico/biossíntese , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Lactuca/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética
17.
J Exp Bot ; 61(15): 4423-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20693410

RESUMO

Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity.


Assuntos
Lactuca/genética , Locos de Características Quantitativas/genética , Sementes/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta/genética , Germinação/genética , Endogamia , Lactuca/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Fatores de Tempo
18.
J Agric Food Chem ; 68(20): 5521-5528, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275419

RESUMO

Grain protein composition is important in wheat quality and may influence the amino acidic sequence of bioactive peptides obtained from this feedstock. However, the genetic basis modulating the amino acid profile in durum wheat is not well-understood. Therefore, strong and weak gluten strength durum wheat genotypes were evaluated for their amino acid composition along grain filling. Strong gluten strength lines showed higher expression levels of low-molecular-weight glutenin-related genes between 21 and 35 days post-anthesis (DPA) and exhibited up to 43.5% more alanine than the weak lines at 42 DPA, which was supported by the higher expression levels of putative alanine amino transferase genes in strong genotypes. Therefore, with the involvement of chemistry and molecular biology, the results present here may influence the science of wheat.


Assuntos
Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Glutens/metabolismo , Sementes/química , Triticum/genética , Aminoácidos/química , Regulação da Expressão Gênica no Desenvolvimento , Glutens/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
19.
Plants (Basel) ; 8(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489914

RESUMO

In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.

20.
Food Chem ; 290: 229-238, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31000041

RESUMO

Free radical imbalance is associated with several chronic diseases. However, recent controversies have put in check the validity of colorimetric methods to screen the functionality of polyphenols. Therefore, in this study two antioxidant methods, based on chemical reactions, were tested for their ability in anticipating the reduction of the activation of NF-κB using LPS-activated RAW 264.7 macrophages, selected as a biological model. Grape processing by-products from winemaking showed higher total phenolic content (TPC), antioxidant capacity towards peroxyl radical (31.1%) as well as reducing power (39.5%) than those of grape juice by-products. The same trend was observed when these samples were tested against LPS-activated RAW 264.7 macrophages by reducing the activation NF-κB. Feedstocks containing higher TPC and corresponding ORAC and FRAP results translated to higher reduction in the activation of NF-κB (36.5%). Therefore, this contribution demonstrates that colorimetric methods are still important screening tools owing their simplicity and widespread application.


Assuntos
Antioxidantes/química , NF-kappa B/metabolismo , Fenóis/química , Vitis/química , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Colorimetria , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fenóis/farmacologia , Extratos Vegetais/química , Análise de Componente Principal , Células RAW 264.7 , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA