Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1768(10): 2491-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17618599

RESUMO

Recently, we reported that 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPGOG) prolongs the circulation time of thermosensitive liposomes (TSL). Since the only TSL formulation in clinical trials applies DSPE-PEG2000 and lysophosphatidylcholine (P-lyso-PC), the objective of this study was to compare the influence of these lipids with DPPGOG on in vitro stability and heat-induced drug release properties of TSL. The content release rate was significantly increased by incorporating DPPGOG or P-lyso-PC in TSL formulations. DPPC/DSPC/DPPGOG 50:20:30 (m/m) and DPPC/P-lyso-PC/DSPE-PEG2000 90:10:4 (m/m) did not differ significantly in their release rate of carboxyfluorescein with >70% being released within the first 10s at their phase transition temperature. Furthermore, DPPC/DSPC/DPPGOG showed an improved stability at 37 degrees C in serum compared to the PEGylated TSL. The in vitro properties of DPPGOG-containing TSL remained unchanged when encapsulating doxorubicin instead of carboxyfluorescein. The TSL retained 89.1+/-4.0% of doxorubicin over 3 h at 37 degrees C in the presence of serum. The drug was almost completely released within 120s at 42 degrees C. In conclusion, DPPGOG improves the in vitro properties in TSL formulations compared to DSPE-PEG2000, since it not only increases the in vivo half-life, it even increases the content release rate without negative effect on TSL stability at 37 degrees C which has been seen for DSPE-PEG2000/P-lyso-PC containing TSL.


Assuntos
Glicerol/análogos & derivados , Lipossomos/química , Palmitatos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Estabilidade de Medicamentos , Glicerol/química , Bicamadas Lipídicas/química , Fosfatidiletanolaminas , Polietilenoglicóis , Solubilidade , Temperatura
2.
Invest Radiol ; 43(12): 877-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19002060

RESUMO

OBJECTIVES: Thermal dose in tumor tissue is a key factor for regional hyperthermia (HT) combined with chemotherapy and for drug delivery using thermosensitive liposomes (TSL). It influences therapy outcome, affects the accumulation of liposomes, and triggers the content release from TSL in the target tissue. For the development and clinical application of TSL, noninvasive visualization is of critical importance. For this purpose, TSL loaded with MRI contrast agent (CA) have been developed. With increase in temperature, the CA is released from TSL at the phase transition temperature Tm resulting in a relaxation time change, which allows MRI monitoring. The purpose of this study was to examine the feasibility of an in vivo application and MR characterization of Gd-DTPA-BMA-loaded phosphatidylglyceroglycerol-TSL (Gd-TSL) at mild HT conditions in tumor tissue using a clinically relevant setting. MATERIAL AND METHODS: Gd-TSL were characterized in vitro with varying thermal doses between 37 degrees C and 45 degrees C and distinct solvents by MR at 0.5 T and 1.5 T. In vivo studies were performed in C57BL/6 mice bearing BFS-1 fibrosarcomas at 1.5 T. One tumor-bearing leg was immersed in a temperature-controlled water bath (T). Gd-TSL (Tm = 43.5 +/- 0.2 degrees C) were injected either intratumorally or intravenously at T = 37.3 +/- 0.1 degrees C or T = 42.5 +/- 0.3 degrees C. As a control, nonliposomal Gd-DTPA-BMA was injected intravenously at T = 43.1 +/- 0.3 degrees C. A second tumor on the contralateral limb, which remained unheated, served as a control. CA release was monitored by T1-weighted spin-echo. RESULTS: The in vitro characterization demonstrated at heated and unheated samples a strong increase in T1-relaxivity of Gd-TSL solutions from 0.4 mM-1 s-1 (37.5 degrees C) to 4.2 mM-1 s-1 (43.3 degrees C) at 0.5 T. Thermal dose and solvent affected the rate of relaxation time change significantly. A fast and complete release was observed in samples with serum, whereas Gd-TSL in glucose was only partially released within 1 hour. A dedicated experimental setup was developed for standardized in vivo investigation. Tumor signal intensity changes were detectable in all animals. After intratumoral injection of Gd-TSL, the signal increased heterogeneously (max., +52% +/- 25%) within 3 minutes after temperature increase and decreased strongly thereafter, whereas after i.v. injection, the signal increased homogeneously (+19% +/- 3%) within 2 minutes persisting thereafter. The unheated control tumors on the contralateral legs showed a 10% +/- 3% signal increase within 2 minutes. Injection at 37 degrees C showed a continuous signal increase in "heated" and unheated tumors of up to 8% to 10%. Nonliposomal CA injection demonstrated that tumors were well perfused during HT. CONCLUSION: HT-induced CA release from Gd-TSL was monitored and characterized by MRI after i.v. injection in tumor-bearing mice. Higher temperatures resulted in higher signal changes. Immediately after i.v. injection, heated tumor tissue was distinguishable from unheated tumor tissue. The Gd-TSL appears to be suitable for MR monitoring of HT tumor treatment in a clinical MRI setting independent of field strength.


Assuntos
Fibrossarcoma/patologia , Gadolínio DTPA/administração & dosagem , Hipotermia Induzida/métodos , Lipossomos/química , Imageamento por Ressonância Magnética/métodos , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Gadolínio DTPA/química , Calefação/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Hum Gene Ther ; 19(11): 1283-92, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19866491

RESUMO

Locoregional hyperthermia (HT) can be used for site-directed activation of macromolecular drug delivery systems. We have developed a gene delivery system based on thermosensitive block copolymers (TSCs) with a phase transition temperature of 42 degrees C [Zintchenko, A., Ogris, M., and Wagner, E. (2006). Bioconjug. Chem. 17, 766-772], in which the statistical copolymer of vinylpyrrolidinone and N-isopropylacryamide is grafted on polyethylenimine (PEI). Here we applied polyplexes consisting of plasmid DNA and TSCs systemically in A/J mice bearing a syngeneic Neuro2A neuroblastoma tumor subcutaneously in each hind limb. One limb was selectively treated by HT at 42 degrees C, at the same time that polyplexes were injected via the tail vein. Hyperthermia led to increased accumulation of thermosensitive polymer and aggregation of thermosensitive polyplexes in HT-treated tumors, resulting in up to 10-fold increased DNA deposition compared with non-HT-treated tumor. The level of transgene expression induced by TSC polyplexes in HT-treated tumors was significantly higher and selective for tumor tissue. With nonthermosensitive PEI polyplexes HT did not influence transgene deposition or expression in tumor.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Terapia Genética , Hipertermia Induzida , Neuroblastoma/terapia , Polímeros/química , Transgenes/fisiologia , Animais , Vetores Genéticos , Membro Posterior/metabolismo , Membro Posterior/patologia , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos A , Neuroblastoma/genética , Polietilenoimina/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA