Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 47(3): 481-497.e7, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930660

RESUMO

Transcriptional regulation during CD4+ T cell fate decisions enables their differentiation into distinct states, guiding immune responses toward antibody production via Tfh cells or inflammation by Teff cells. Tfh-Teff cell fate commitment is regulated by mutual antagonism between the transcription factors Bcl6 and Blimp-1. Here we examined how T cell receptor (TCR) signals establish and arbitrate Bcl6-Blimp-1 counter-antagonism. We found that the TCR-signal-induced transcription factor Irf4 is essential for the differentiation of Bcl6-expressing Tfh and Blimp-1-expressing Teff cells. Increased TCR signaling raised Irf4 amounts and promoted Teff cell fates at the expense of Tfh ones. Importantly, orthogonal induction of Irf4 expression redirected Tfh cell fate trajectories toward those of Teff. Mechanistically, we linked greater Irf4 abundance with its recruitment toward low-affinity binding sites within Teff cell cis-regulatory elements, including those of Prdm1. We propose that the Irf4 locus functions as the "reader" of TCR signal strength, and in turn, concentration-dependent activity of Irf4 "writes" T helper fate choice.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Antígenos/imunologia , Sítios de Ligação , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imunização , Fatores Reguladores de Interferon/genética , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia
2.
Immunity ; 47(6): 1114-1128.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221730

RESUMO

CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto , Transplante de Coração , Fatores Reguladores de Interferon/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/mortalidade , Rejeição de Enxerto/patologia , Granzimas/genética , Granzimas/imunologia , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transplante Homólogo
3.
J Immunol ; 211(2): 180-185, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37283516

RESUMO

CD4 tissue-resident memory T cells (TRMs) allow robust protection of barrier surfaces against pathogens. We investigated the role of T-bet in the formation of liver CD4 TRMs using mouse models. T-bet-deficient CD4 T cells did not efficiently form liver TRMs when compared with wild-type (WT). In addition, ectopic expression of T-bet enhanced the formation of liver CD4 TRMs, but only when in competition with WT CD4 T cells. Liver TRMs also expressed higher levels of CD18, which was T-bet dependent. The WT competitive advantage was blocked by Ab neutralization of CD18. Taken together, our data show that activated CD4 T cells compete for entry to liver niches via T-bet-induced expression of CD18, allowing TRM precursors to access subsequent hepatic maturation signals. These findings uncover an essential role for T-bet in liver TRM CD4 formation and suggest targeted enhancement of this pathway could increase the efficacy of vaccines that require hepatic TRMs.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Animais , Camundongos , Memória Imunológica , Fígado , Células T de Memória , Antígenos CD18
4.
Nat Immunol ; 13(3): 300-7, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267219

RESUMO

The molecular crosstalk between the interleukin 7 receptor (IL-7R) and the precursor to the B cell antigen receptor (pre-BCR) in B lymphopoiesis has not been elucidated. Here we demonstrate that in pre-B cells, the IL-7R but not the pre-BCR was coupled to phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt; signaling by this pathway inhibited expression of recombination-activating gene 1 (Rag1) and Rag2. Attenuation of IL-7 signaling resulted in upregulation of the transcription factors Foxo1 and Pax5, which coactivated many pre-B cell genes, including Rag1, Rag2 and Blnk. Induction of Blnk (which encodes the signaling adaptor BLNK) enabled pre-BCR signaling via the signaling molecule Syk and promoted immunoglobulin light-chain rearrangement. BLNK expression also antagonized Akt activation, thereby augmenting the accumulation of Foxo1 and Pax5. This self-reinforcing molecular circuit seemed to sense limiting concentrations of IL-7 and functioned to constrain the proliferation of pre-B cells and trigger their differentiation.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular , Interleucina-7/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais , Animais , Linfócitos B/citologia , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/imunologia , Camundongos , Fator de Transcrição PAX5/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo
5.
Trends Immunol ; 41(7): 614-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467029

RESUMO

Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.


Assuntos
Formação de Anticorpos , Linfócitos B , Redes Reguladoras de Genes , Fatores Reguladores de Interferon , Linfócitos T Auxiliares-Indutores , Animais , Formação de Anticorpos/genética , Linfócitos B/imunologia , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
6.
J Immunol ; 207(12): 2992-3003, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34759017

RESUMO

The germinal center (GC) reaction is a coordinated and dynamic ensemble of cells and processes that mediate the maturation and selection of high-affinity GC B cells (GCBs) from lower-affinity precursors and ultimately results in plasma cell and memory cell fates that exit the GC. It is of great interest to identify intrinsic and extrinsic factors that control the selection process. The transcription factor IRF4, induced upon BCR and CD40 signaling, is essential for the acquisition of plasma cell and GCB cell fates. We hypothesized that beyond this early requirement, IRF4 continuously operates at later phases of the B cell response. We show that IRF4 is expressed in GCBs at levels greater than seen in resting cells and plays a role in efficient selection of high-affinity GCBs. Halving Irf4 gene copy number in an Ag-specific murine B cell model, we found that Ag presentation, isotype switching, GC formation and zonation, somatic hypermutation rates, and proliferation were comparable with cells with a full Irf4 allelic complement. In contrast, Irf4 haploinsufficient GCBs exhibited impaired generation of high-affinity cells. Mechanistically, we demonstrate suboptimal Blimp-1 regulation among high-affinity Irf4 haploinsufficient GCBs. Furthermore, in cotransfer settings, we observed a marked disadvantage of Irf4 haploinsufficient cells for GC entry, evidential of ineffective recruitment of T cell help. We propose that, analogous to its role in early GC entry, IRF4 continues to function in the late phase of the Ab response to promote productive T follicular helper cell interactions and to activate optimal Blimp-1 expression during GC selection and affinity maturation.


Assuntos
Linfócitos B , Haploinsuficiência , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Centro Germinativo/metabolismo , Camundongos , Plasmócitos/metabolismo
7.
Immunity ; 38(5): 918-29, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23684984

RESUMO

The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/metabolismo , Fatores Reguladores de Interferon/metabolismo , Plasmócitos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Citidina Desaminase/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Fatores Reguladores de Interferon/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Plasmócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6 , Transativadores/metabolismo , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
J Immunol ; 195(9): 4069-73, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416270

RESUMO

Sensitized recipients with pretransplant donor-specific Abs are at higher risk for Ab-mediated rejection than nonsensitized recipients, yet little is known about the properties of memory B cells that are central to the recall alloantibody responses. Using cell enrichment and MHC class I tetramers, C57BL/6 mice sensitized with BALB/c splenocytes were shown to harbor H-2K(d)-specific IgG(+) memory B cells with a post-germinal center phenotype (CD73(+)CD273(+)CD38(hi)CD138(-)GL7(-)). These memory B cells adoptively transferred into naive mice without memory T cells recapitulated class-switched recall alloantibody responses. During recall, memory H-2K(d)-specific B cells preferentially differentiated into Ab-secreting cells, whereas in the primary response, H-2K(d)-specific B cells differentiated into germinal center cells. Finally, our studies revealed that, despite fundamental differences in alloreactive B cell fates in sensitized versus naive recipients, CTLA-4Ig was unexpectedly effective at constraining B cell responses and heart allograft rejection in sensitized recipients.


Assuntos
Abatacepte/farmacologia , Linfócitos B/efeitos dos fármacos , Sobrevivência de Enxerto , Transplante de Coração , Memória Imunológica , 5'-Nucleotidase/análise , Aloenxertos , Animais , Linfócitos B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 2 Ligante de Morte Celular Programada 1/análise
9.
Semin Immunol ; 24(2): 77-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21925896

RESUMO

The use of conventional immunosuppression has successfully improved short-term allograft survival, however, long-term allograft survival has remained static and is complicated by serious side effects secondary to the long-term use of immunosuppressive agents. Immunological tolerance is the ultimate goal of organ transplantation, however it is an infrequent event in humans. Accordingly, over the past several decades, there has been a push to fully understand both the cellular and molecular mechanisms that play a role in the induction and maintenance of tolerance, with recent data implicating B cells and donor specific alloantibody as a barrier to and potential mediator of allograft tolerance. The study of B cells and alloantibody in transplant tolerance has evolved over recent years from using rodent models to non-human primate models. This review will discuss the role of B cells and alloantibody as antagonists and facilitators of transplantation tolerance, and highlight the experimental models developed for elucidating the mechanisms of B cell tolerance to alloantigen.


Assuntos
Linfócitos B/imunologia , Modelos Animais de Doenças , Tolerância ao Transplante/imunologia , Animais , Humanos , Isoanticorpos/imunologia , Isoanticorpos/metabolismo , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Órgãos
10.
Blood ; 119(9): 2003-12, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22238324

RESUMO

While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8(-/-) BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8(-/-) common myeloid progenitors and, unexpectedly, Irf8(-/-) ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.


Assuntos
Linhagem da Célula/genética , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Fatores Reguladores de Interferon/genética , Linfócitos/citologia , Células Mieloides/citologia , Neutrófilos/citologia , Animais , Diferenciação Celular/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Transcrição Gênica
11.
Bioinformatics ; 28(2): 206-13, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22084256

RESUMO

MOTIVATION: Identifying the target genes regulated by transcription factors (TFs) is the most basic step in understanding gene regulation. Recent advances in high-throughput sequencing technology, together with chromatin immunoprecipitation (ChIP), enable mapping TF binding sites genome wide, but it is not possible to infer function from binding alone. This is especially true in mammalian systems, where regulation often occurs through long-range enhancers in gene-rich neighborhoods, rather than proximal promoters, preventing straightforward assignment of a binding site to a target gene. RESULTS: We present EMBER (Expectation Maximization of Binding and Expression pRofiles), a method that integrates high-throughput binding data (e.g. ChIP-chip or ChIP-seq) with gene expression data (e.g. DNA microarray) via an unsupervised machine learning algorithm for inferring the gene targets of sets of TF binding sites. Genes selected are those that match overrepresented expression patterns, which can be used to provide information about multiple TF regulatory modes. We apply the method to genome-wide human breast cancer data and demonstrate that EMBER confirms a role for the TFs estrogen receptor alpha, retinoic acid receptors alpha and gamma in breast cancer development, whereas the conventional approach of assigning regulatory targets based on proximity does not. Additionally, we compare several predicted target genes from EMBER to interactions inferred previously, examine combinatorial effects of TFs on gene regulation and illustrate the ability of EMBER to discover multiple modes of regulation. AVAILABILITY: All code used for this work is available at http://dinner-group.uchicago.edu/downloads.html.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Inteligência Artificial , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico
12.
Transpl Int ; 26(9): 919-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23841454

RESUMO

We have previously shown that mice deficient in protein kinase C theta (PKCθ) have the ability to reject cardiac allografts, but are susceptible to tolerance induction. Here we tested role of B cells in assisting alloimmune responses in the absence of PKCθ. Mouse cardiac allograft transplantations were performed from Balb/c (H-2d) to PKCθ knockout (PKCθ(-/-)), PKCθ and B cell double-knockout (PBDK, H-2b) mice and wild-type (WT) C57BL/6 (H-2b) mice. PBDK mice spontaneously accepted the allografts with the inhibition of NF-κB activation in the donor cardiac allograft. Anti-B cell antibody (rituximab) significantly delayed allograft rejection in PKCθ(-/-), but not in WT mice. Co-transfer of PKCθ(-/-) T plus PKCθ(-/-) B cells or primed sera triggered allograft rejection in Rag1(-/-) mice, and only major histocompatibility complex class II-enriched B cells, but not class I-enriched B cells, were able to promote rejection. This, together with the inability of PKCθ(-/-) and CD28(-/-) double-deficient (PCDK) mice to acutely reject allografts, suggested that an effective cognate interaction between PKCθ(-/-) T and B cells for acute rejection is CD28 molecule dependent. We conclude that T-B cell interactions synergize with PKCθ(-/-) T cells to mediate acute allograft rejection.


Assuntos
Linfócitos B/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , Isoenzimas/deficiência , Proteína Quinase C/deficiência , Aloenxertos , Animais , Anticorpos Monoclonais Murinos/uso terapêutico , Rejeição de Enxerto/tratamento farmacológico , Isoenzimas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , Proteína Quinase C/imunologia , Proteína Quinase C-theta , Rituximab , Linfócitos T/transplante
13.
Bio Protoc ; 13(19): e4835, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817907

RESUMO

B cells play a critical role in host defense, producing antibodies in response to microbial infection. An inability to produce an effective antibody response leaves affected individuals prone to serious infection; therefore, proper B-cell development is essential to human health. B-cell development begins in the bone marrow and progresses through various stages until maturation occurs in the spleen. This process involves several sequential, complex events, starting with pre- and pro-B cells, which rearrange the heavy and light chain genes responsible for producing clonally diverse immunoglobulin (Ig) molecules. These cells then differentiate into immature B cells, followed by mature B cells. The bone marrow is a complex ecological niche of supporting stromal cells, extracellular matrix components, macrophages, and hematopoietic precursor cells influencing B-cell development, maturation, and differentiation. Once fully mature, B cells circulate in peripheral lymphoid organs and can respond to antigenic stimuli. As specific cell surface markers are expressed during each stage of B-cell development, researchers use flow cytometry as a powerful tool to evaluate developmental progression. In this protocol, we provide a step-by-step method for bone marrow isolation, cell staining, and data analysis. This tool will help researchers gain a deeper understanding of the progression of B-cell development and provide a pertinent flow gating strategy.

14.
Mol Syst Biol ; 7: 495, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21613984

RESUMO

The B-lymphocyte lineage is a leading system for analyzing gene regulatory networks (GRNs) that orchestrate distinct cell fate transitions. Upon antigen recognition, B cells can diversify their immunoglobulin (Ig) repertoire via somatic hypermutation (SHM) and/or class switch DNA recombination (CSR) before differentiating into antibody-secreting plasma cells. We construct a mathematical model for a GRN underlying this developmental dynamic. The intensity of signaling through the Ig receptor is shown to control the bimodal expression of a pivotal transcription factor, IRF-4, which dictates B cell fate outcomes. Computational modeling coupled with experimental analysis supports a model of 'kinetic control', in which B cell developmental trajectories pass through an obligate transient state of variable duration that promotes diversification of the antibody repertoire by SHM/CSR in direct response to antigens. More generally, this network motif could be used to translate a morphogen gradient into developmental inductive events of varying time, thereby enabling the specification of distinct cell fates.


Assuntos
Diversidade de Anticorpos/imunologia , Linfócitos B/imunologia , Redes Reguladoras de Genes , Genes de Imunoglobulinas , Fatores Reguladores de Interferon , Transdução de Sinais/imunologia , Animais , Diversidade de Anticorpos/genética , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Switching de Imunoglobulina/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Computação Matemática , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Recombinação Genética/imunologia , Transdução de Sinais/genética , Hipermutação Somática de Imunoglobulina/genética , Biologia de Sistemas/métodos
15.
Transpl Int ; 25(10): 1050-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22805456

RESUMO

The contribution of T cells and graft-reactive antibodies to acute allograft rejection is widely accepted, but the role of graft-infiltrating B and plasma cells is controversial. We examined 56 consecutive human renal transplant biopsies classified by Banff schema into T-cell-mediated (N = 21), antibody-mediated (N = 18), and mixed (N = 17) acute rejection, using standard immunohistochemistry for CD3, CD20, CD138, and CD45. In a predominantly African-American population (75%), neither Banff classification nor C4d deposition predicted the return to dialysis. Immunohistochemical analysis revealed CD3(+) T cells as the dominant cell type, followed by CD20(+) B cells and CD138(+) plasma cells in all acute rejection types. Using univariate Cox Proportional Hazard analysis, plasma cell density significantly predicted graft failure while B-cell density trended toward significance. Surprisingly T-cell density did not predict graft failure. The estimated glomerular filtration rate (eGFR) at diagnosis of acute rejection also predicted graft failure, while baseline eGFR ≥6 months prior to biopsy did not. Using multivariate analysis, a model including eGFR at biopsy and plasma cell density was most predictive of graft loss. These observations suggest that plasma cells may be a critical mediator and/or an independently sensitive marker of steroid-resistant acute rejection.


Assuntos
Transplante de Rim/métodos , Plasmócitos/citologia , Insuficiência Renal/terapia , Adulto , Antígenos CD20/biossíntese , Linfócitos B/imunologia , Biópsia/métodos , Complexo CD3/biossíntese , Complemento C4b/biossíntese , Feminino , Taxa de Filtração Glomerular , Rejeição de Enxerto , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/biossíntese , Modelos de Riscos Proporcionais , Sindecana-1/biossíntese , Transplante Homólogo
16.
Elife ; 112022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542058

RESUMO

Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.


The immune system is a complex network of cells and molecules, which helps to protect the body from invaders. The adaptive immune system can recognise millions of assailants, kill them, and 'learn' from this experience to mount an even quicker defence the next time the body is infected. To achieve this level of protection, specific immune cells, called B cells, divide when they come into contact with a molecule from a foreign particle, the antigen. The cloned B cells then produce millions of protective proteins, the antibodies, which patrol the blood stream and tag harmful particles for destruction. An antibody resembles a Y-shaped structure that contains a 'variable' region, which gives it the specificity to interact with an antigen, and a 'constant' region, which interacts with components of the immune system and determines the mechanisms used to destroy a pathogen. Based on the constant region, antibodies can be divided into five main classes. B cells are able to switch their production from one antibody class to another in an event known as class switch recombination, by making changes to the constant region. They do this by cutting out a portion of the genes for the constant region from their DNA and fusing the remaining DNA. The resulting antibodies still recognise the same target, but interact with different components of the immune system, ensuring that all the body's forces are mobilised. R-loops are temporary structures that form when a cell 'reads' the instructions in its DNA to make proteins. R-loops provide physical support by anchoring the transcription template to the DNA. They help control the activity of genes, but if they stay on the DNA for too long they could interfere with any form of. DNA repair ­ including the cutting and fusing mechanisms during class switch recombination. To find out more about this process, Zhao et al. used B-cells from mice lacking two specific proteins that usually help to remove R-loops. Without these proteins, the B cells generated more R-loops than normal. Nevertheless, the B-cells were able to undergo class switch recombination, even though their chromosomes showed large areas of DNA damage, and DNA sections that had been repaired contained several mistakes. Errors that occur during class switch recombination have been linked to immune disorders and B cell cancers. The study of Zhao et al. shows that even if R-loops do not affect some processes in B cells, they could still impact the overall health of their DNA. A next step would be to test if an inability to remove R-loops could indeed play a role in immune disorders and B-cell cancers.


Assuntos
Recombinação Genética , Ribonucleases , Humanos , Ribonucleases/genética , Switching de Imunoglobulina/genética , Endorribonucleases/genética , Isotipos de Imunoglobulinas/genética , Instabilidade Genômica , Citidina Desaminase/genética
17.
STAR Protoc ; 2(3): 100633, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34258594

RESUMO

Molecular-level understanding of plasma cell (PC) differentiation has been modeled using lipopolysaccharide (LPS) stimulation in vitro. However, this system does not involve the B-cell receptor (BCR)-a critical component of B cell biology. Here, we present a protocol for in vitro PC differentiation system dependent on BCR signaling that easily scales up for cell number-demanding applications, including protein complex purification. We describe how to set up this system and detail applications for endogenous complex purification of chromatin-associated proteins. For further details on the use and execution of this protocol, please refer to Sciammas et al. (2011) and Ochiai et al. (2018, 2020).


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Plasmócitos/citologia , Proteínas/isolamento & purificação , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Cromatografia Líquida/métodos , Meios de Cultura , Camundongos , Camundongos Transgênicos , Proteínas/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Espectrometria de Massas em Tandem/métodos
18.
J Clin Invest ; 130(7): 3453-3466, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32452834

RESUMO

The absence of alloantibodies is a feature of transplantation tolerance. Although the lack of T cell help has been evoked to explain this absence, herein we provide evidence for B cell-intrinsic tolerance mechanisms. Using a murine model of heart tolerance, we showed that alloreactive B cells were not deleted but rapidly lost their ability to differentiate into germinal center B cells and secrete donor-specific antibodies. We inferred that tolerant alloreactive B cells retained their ability to sense alloantigen because they continued to drive T cell maturation into CXCR5+PD-1+ T follicular helper cells. Unexpectedly, dysfunctional alloreactive B cells acquired the ability to inhibit antibody production by new naive B cells in an antigen-specific manner. Thus, tolerant alloreactive B cells contribute to transplantation tolerance by foregoing germinal center responses while retaining their ability to function as antigen-presenting cells and by actively suppressing de novo alloreactive B cell responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Isoanticorpos/imunologia , Isoantígenos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Tolerância ao Transplante , Animais , Linfócitos B/patologia , Feminino , Centro Germinativo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Linfócitos T Auxiliares-Indutores/patologia
19.
Cell Rep ; 33(12): 108517, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357426

RESUMO

The chromatin protein positive coactivator 4 (PC4) has multiple functions, including chromatin compaction. However, its role in immune cells is largely unknown. We show that PC4 orchestrates chromatin structure and gene expression in mature B cells. B-cell-specific PC4-deficient mice show impaired production of antibody upon antigen stimulation. The PC4 complex purified from B cells contains the transcription factors (TFs) IKAROS and IRF4. IKAROS protein is reduced in PC4-deficient mature B cells, resulting in de-repression of their target genes in part by diminished interactions with gene-silencing components. Upon activation, the amount of IRF4 protein is not increased in PC4-deficient B cells, resulting in reduction of plasma cells. Importantly, IRF4 reciprocally induces PC4 expression via a super-enhancer. PC4 knockdown in human B cell lymphoma and myeloma cells reduces IKAROS protein as an anticancer drug, lenalidomide. Our findings establish PC4 as a chromatin regulator of B cells and a possible therapeutic target adjoining IKAROS in B cell malignancies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição Ikaros/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos
20.
PLoS One ; 15(7): e0235518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614928

RESUMO

Interruption of the programmed death 1 (PD-1) / programmed death ligand 1 (PD-L1) pathway is an established and effective therapeutic strategy in human oncology and holds promise for veterinary oncology. We report the generation and characterization of monoclonal antibodies specific for canine PD-1 and PD-L1. Antibodies were initially assessed for their capacity to block the binding of recombinant canine PD-1 to recombinant canine PD-L1 and then ranked based on efficiency of binding as judged by flow cytometry. Selected antibodies were capable of detecting PD-1 and PD-L1 on canine tissues by flow cytometry and Western blot. Anti-PD-L1 worked for immunocytochemistry and anti-PD-1 worked for immunohistochemistry on formalin-fixed paraffin embedded canine tissues, suggesting the usage of this antibody with archived tissues. Additionally, anti-PD-L1 (JC071) revealed significantly increased PD-L1 expression on canine monocytes after stimulation with peptidoglycan or lipopolysaccharide. Together, these antibodies display specificity for the natural canine ligand using a variety of potential diagnostic applications. Importantly, multiple PD-L1-specific antibodies amplified IFN-γ production in a canine peripheral blood mononuclear cells (PBMC) concanavlin A (Con A) stimulation assay, demonstrating functional activity.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Cães , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Peptidoglicano/farmacologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA