Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975214

RESUMO

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Assuntos
Infecções por HIV , Estilbenos , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase C/genética , Quinase 9 Dependente de Ciclina/metabolismo , Leucócitos Mononucleares/metabolismo , Replicação Viral , Latência Viral , Estilbenos/farmacologia , Infecções por HIV/metabolismo , RNA
2.
J Nat Prod ; 85(5): 1274-1281, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35522580

RESUMO

Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.


Assuntos
Infecções por HIV , HIV-1 , Poríferos , Animais , Colúmbia Britânica , Linfócitos T CD4-Positivos , Poríferos/química , Sesterterpenos/química , Latência Viral
3.
Clin Infect Dis ; 72(3): 495-498, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33527127

RESUMO

Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , DNA Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Provírus/genética , Latência Viral
4.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891417

RESUMO

Despite the success of combination antiretroviral therapy (cART), HIV persists in low- and middle-income countries (LMIC) due to emerging drug resistance and insufficient drug accessibility. Furthermore, cART does not target latently-infected CD4+ T cells, which represent a major barrier to HIV eradication. The "shock and kill" therapeutic approach aims to reactivate provirus expression in latently-infected cells in the presence of cART and target virus-expressing cells for elimination. An attractive therapeutic prototype in LMICs would therefore be capable of simultaneously inhibiting viral replication and inducing latency reversal. Here we report that Gnidia sericocephala, which is used by traditional health practitioners in South Africa for HIV/AIDS management to supplement cART, contains at least four daphnane-type compounds (yuanhuacine A (1), yuanhuacine as part of a mixture (2), yuanhuajine (3), and gniditrin (4)) that inhibit viral replication and/or reverse HIV latency. For example, 1 and 2 inhibit HIV replication in peripheral blood mononuclear cells (PBMC) by >80% at 0.08 µg/mL, while 1 further inhibits a subtype C virus in PBMC with a half-maximal effective concentration (EC50) of 0.03 µM without cytotoxicity. Both 1 and 2 also reverse HIV latency in vitro consistent with protein kinase C activation but at 16.7-fold lower concentrations than the control prostratin. Both 1 and 2 also reverse latency in primary CD4+ T cells from cART-suppressed donors with HIV similar to prostratin but at 6.7-fold lower concentrations. These results highlight G. sericocephala and components 1 and 2 as anti-HIV agents for improving cART efficacy and supporting HIV cure efforts in resource-limited regions.


Assuntos
Diterpenos , Infecções por HIV , HIV-1 , Plantas Medicinais , Thymelaeaceae , Linfócitos T CD4-Positivos , Cromatografia Líquida de Alta Pressão , Diterpenos/farmacologia , Diterpenos/uso terapêutico , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Ativação Viral , Latência Viral
5.
Biochem Pharmacol ; 186: 114462, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577894

RESUMO

While combination antiretroviral therapy (cART) durably suppresses HIV replication, virus persists in CD4+ T-cells that harbor latent but spontaneously inducible and replication-competent provirus. One strategy to inactivate these viral reservoirs involves the use of agents that continue to reinforce HIV latency even after their withdrawal. To identify new chemical leads with such properties, we investigated a series of naturally-occurring flavones (chrysin, apigenin, luteolin, and luteolin-7-glucoside (L7G)) and functionally-related cyclin dependent kinase 9 (CDK9) inhibitors (flavopiridol and atuveciclib) which are reported or presumed to suppress HIV replication in vitro. We found that, while all compounds inhibit provirus expression induced by latency-reversing agents in vitro, only aglycone flavonoids (chrysin, apigenin, luteolin, flavopiridol) and atuveciclib, but not the glycosylated flavonoid L7G, inhibit spontaneous latency reversal. Aglycone flavonoids and atuveciclib, but not L7G, also inhibit CDK9 and the HIV Tat protein. Aglycone flavonoids do not reinforce HIV latency following their in vitro withdrawal, which corresponds with their ability to also inhibit class I/II histone deacetylases (HDAC), a well-established mechanism of latency reversal. In contrast, atuveciclib and flavopiridol, which exhibit little or no HDAC inhibition, continue to reinforce latency for 9 to 14+ days, respectively, following their withdrawal in vitro. Finally, we show that flavopiridol also inhibits spontaneous ex vivo viral RNA production in CD4+ T cells from donors with HIV. These results implicate CDK9 inhibition (in the absence of HDAC inhibition) as a potentially favorable property in the search for compounds that durably reinforce HIV latency.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Flavonoides/farmacologia , HIV-1/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Latência Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Quinase 9 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/uso terapêutico , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , HIV-1/enzimologia , Histona Desacetilases/metabolismo , Humanos , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Latência Viral/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
AIDS ; 34(10): 1461-1466, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675559

RESUMO

OBJECTIVE: Glycosylation plays a critical role in mediating several antibody (mainly immunoglobulin G; IgG) immunological functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), and anti-inflammatory activities. We investigated whether IgG glycosylation and immune profile patterns are differentially modulated in mono and dual infection using samples from untreated hepatitis C virus (HCV)-infected individuals with and without co-infection with antiretroviral therapy (ART)-suppressed HIV. DESIGN: IgG glycosylation, immune subsets, natural killer cell function, and liver enzymes were assessed in 14 HCV mono-infected and 27 ART-suppressed HIV/HCV co-infected participants naïve to HCV treatment. Historic IgG glycosylation data from 23 ART-suppressed chronically HIV-infected individuals were also used for comparisons. METHODS: Plasma IgG glycosylation was assessed using capillary electrophoresis. Whole blood was used for immune subset characterization by flow cytometry. Peripheral blood mononuclear cells were used to measure constitutive and interferon-α-induced K562 target cell lysis. Statistical analysis was performed using R (3.5.0). RESULTS: HIV/HCV had lower levels of pro-ADCC-associated nonfucosylated glycans when compared with HIV [e.g. di-sialylated A2 percentage (%): P = 0.04], and higher levels of T and myeloid cell activation/exhaustion when compared with HCV (e.g. CD3CD8CD38 %: P < 0.001). Finally, in HCV high levels of the anti-inflammatory galactosylated and sialylated glycans were associated with low plasma levels of aspartate aminotransferase (AST), low CD8 T-cell activation, and high CD8 T-cell exhaustion. CONCLUSION: HCV modulates IgG glycosylation profile in HIV co-infected individuals on suppressive ART. These results could inform on the modulation of IgG glycans in other mono and dual infections.


Assuntos
Coinfecção , Infecções por HIV , Hepatite C , Imunoglobulina G/química , Fármacos Anti-HIV/uso terapêutico , Coinfecção/imunologia , Coinfecção/virologia , Glicosilação , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Hepacivirus/imunologia , Hepatite C/complicações , Hepatite C/imunologia , Humanos , Leucócitos Mononucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA