Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 31(7): 1036-1047, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35213752

RESUMO

Psoriasis vulgaris is an inflammatory skin disease that affects 2%-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here, we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin) and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signalling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signalling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.


Assuntos
Interleucina-17 , Psoríase , Animais , Humanos , Interleucina-17/metabolismo , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Exp Dermatol ; 30(6): 820-830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33377546

RESUMO

Since first recognized in 1839, the pathogenesis of acne inversa (AI) has undergone repeated revisions. Although there is agreement that AI involves occlusion of hair follicles with subsequent inflammation and the formation of tracts, the histologic progression of this disease still requires refinement. The objective of this study was to examine the histologic progression of AI based on the examination of a large cohort of punch biopsies and excisional samples that were examined first by hematoxylin and eosin staining. The most informative of these samples were step-sectioned and stained by immunohistochemistry for epithelial and inflammatory markers. Based on this examination, the following observations were made: 1) AI arises from the epithelium of the infundibulum of terminal and vellus hairs; 2) These form cysts and epithelial tendrils that extend into soft tissue; 3) Immunohistochemical staining demonstrates the epithelium of AI is disordered with infundibular and isthmic differentiation and de novo expression of stem cell markers; 4) The inflammatory response in AI is heterogeneous and largely due to cyst rupture. The conclusions of this investigation were that AI is an epithelial-driven disease caused by infiltrative, cyst forming tendrils and most of the inflammation is due to cyst rupture and release of cornified debris and bacteria. Cyst rupture often occurs below the depths of punch biopsy samples indicating their use for analysis may give an incomplete picture of the disease. Finally, our data suggest that unless therapies inhibit tendril development, it is unlikely they will cause prolonged treatment-induced remission in AI.


Assuntos
Acne Vulgar/patologia , Progressão da Doença , Hidradenite Supurativa/patologia , Folículo Piloso/patologia , Humanos , Inflamação/patologia
3.
Exp Dermatol ; 28(2): 113-120, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417427

RESUMO

Psoriasis vulgaris (PV) results from activation of IL-23/Th17 immune pathway and is further amplified by cytokines/chemokines from skin cells. Among skin-derived pro-inflammatory cytokines, IL-36 family members are highly upregulated in PV patients and play a critical role in general pustular psoriasis. However, there is limited data showing crosstalk between the IL-23 and IL-36 pathways in PV. Herein, potential attenuation of skin inflammation in the IL-23-induced mouse model of psoriasiform dermatitis by functional inhibition of IL-36 receptor (IL-36R) was interrogated. Anti-mouse IL-36R monoclonal antibodies (mAbs) were generated and validated in vitro by inhibiting IL-36α-induced secretion of CXCL1 from NIH 3T3 cells. Antibody target engagement was demonstrated by inhibition of CXCL1 production in a novel acute model of IL-36α systemic injection in mice. In addition, anti-IL-36R mAbs inhibited tissue inflammation and inflammatory gene expression in an IL-36α ear injection model of psoriasiform dermatitis demonstrating engagement of the target in the ear skin. To elucidate the possible role of IL-36 signalling in IL-23/Th17 pathway, the ability of anti-IL-36R mAbs to inhibit skin inflammation in an IL-23 ear injection model was assessed. Inhibiting the IL-36 pathway resulted in significant attenuation of skin thickening and psoriasis-relevant gene expression. Taken together, these data suggest a role for IL-36 signalling in the IL-23/Th17 signalling axis in PV.


Assuntos
Anticorpos Monoclonais/imunologia , Dermatite/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Psoríase/imunologia , Receptores de Interleucina/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Dermatite/terapia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Inflamação/metabolismo , Interleucina-1/imunologia , Interleucina-23/farmacologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Psoríase/terapia , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina/imunologia , Receptores de Interleucina-1/imunologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Células Th17/citologia
4.
Chembiochem ; 19(6): 613-621, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29314498

RESUMO

We describe the design, synthesis, and structure-activity relationships (SARs) of a series of 2-aminobenzothiazole inhibitors of Rho kinases (ROCKs) 1 and 2, which were optimized to low nanomolar potencies by use of protein kinase A (PKA) as a structure surrogate to guide compound design. A subset of these molecules also showed robust activity in a cell-based myosin phosphatase assay and in a mechanical hyperalgesia in vivo pain model.


Assuntos
Benzotiazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Benzotiazóis/síntese química , Benzotiazóis/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinases Associadas a rho/metabolismo
6.
J Dermatol ; 50(10): 1321-1329, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37455419

RESUMO

Phospholipase D2 (PLD2), a major isoform of the PLD family, has been reported to regulate inflammatory responses. Thus far, the relevance of PLD2 in psoriasis, an inflammatory skin disease, has not been explored. In the current study, we examined PLD2 expression in the skin of psoriasis patients and the role of PLD2 in an interleukin (IL)-23-induced mouse model of psoriasiform dermatitis. Both in situ hybridization and bulk RNA sequencing showed PLD2 gene expression is significantly higher in lesional relative to non-lesional skin of psoriasis patients or the skin of healthy subjects. PLD2 expression is also enriched in residual lesions from patients on biologic therapies. Murine in vivo studies showed that PLD2 deficiency significantly reduced psoriasiform inflammation in IL-23-injected ears, as reflected by decreases in ear thickness, expression of defensin beta 4A and the S100 calcium binding protein A7A, macrophage infiltrate, and expression of CXCL10 and IL-6. However, the expression of type 17 cytokines, IL-17A and IL-17F, were not reduced. Dual knockout of PLD1 and PLD2 offered little additional protection compared to PLD2 knockout alone in the IL-23 model. In addition, pharmacological inhibition with a pan-PLD1/PLD2 inhibitor also suppressed IL-23-induced psoriasiform dermatitis. Bone-marrow-derived macrophages from wild type (WT) and PLD2 knockout (KO) mice exhibited little difference in viability and sensitivity to lipopolysaccharide and/or interferon gamma, or resiquimod (R848). PLD2 deficiency did not alter the differentiation and function of Th17 cells in an ex vivo study with splenocytes isolated from WT and PLD2 KO mice. Overall, these data suggest that PLD2 may play a role in the pathophysiology of psoriasis. Reducing macrophage infiltrate and cytokine/chemokine production might contribute to an anti-inflammatory effect observed in PLD2 knockout mice. Further studies are required to better understand the mechanisms by which PLD2 contributes to skin lesions in psoriasis patients and psoriasiform dermatitis models.

7.
Bioorg Med Chem Lett ; 22(4): 1716-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22277280

RESUMO

A novel series of diphenyl lactam containing calcium channel blockers is described. Extensive SAR studies resulted in compounds with low molar activity and good plasma exposure after oral dosing. Compounds 2, 6 and 7 demonstrated significant efficacy in the capsaicin model of secondary hyperalgesia following oral administration.


Assuntos
Compostos de Bifenilo/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo N/metabolismo , Descoberta de Drogas , Lactamas/síntese química , Administração Oral , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacocinética , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacocinética , Concentração Inibidora 50 , Lactamas/química , Lactamas/farmacocinética , Estrutura Molecular , Piperazinas/química , Ratos , Solubilidade
8.
Bioorg Med Chem ; 20(13): 4128-39, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22626552

RESUMO

A novel 4-aminocyclopentapyrrolidine series of N-type Ca(2+) channel blockers have been discovered. Enantioselective synthesis of the 4-aminocyclopentapyrrolidines was enabled using N-tert-butyl sulfinamide chemistry. SAR studies demonstrate selectivity over L-type Ca(2+) channels. N-type Ca(2+) channel blockade was confirmed using electrophysiological recording techniques. Compound 25 is an N-type Ca(2+) channel blocker that produces antinociception in inflammatory and nociceptive pain models without exhibiting cardiovascular or motor liabilities.


Assuntos
Acetamidas/síntese química , Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Canais de Cálcio Tipo N/química , Pirrolidinas/química , Pirrolidinas/síntese química , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Modelos Animais de Doenças , Masculino , Dor/tratamento farmacológico , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
J Invest Dermatol ; 142(6): 1587-1596.e2, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34808239

RESUMO

Tape stripping is a minimally invasive, nonscarring method that can be utilized to assess gene expression in the skin but is infrequently used given technical constraints. By comparing different tape stripping technologies and full-thickness skin biopsy results of lesional and nonlesional psoriatic skin from the same patients, we demonstrate that tape stripping with optimized high-resolution transcriptomic profiling can be used to effectively assess and characterize inflammatory responses in the skin. Upon comparison with single-cell RNA-sequencing data from psoriatic full-thickness skin biopsies, we illustrate that tape-stripping efficiently captures the transcriptome of the upper layers of the epidermis with sufficient resolution to assess the molecular components of the feed-forward immune amplification pathway in psoriasis. Notably, nonlesional psoriatic skin sampled by tape stripping demonstrates activated, proinflammatory changes when compared to healthy control skin, suggesting a prepsoriatic state, which is not captured on full-thickness skin biopsy transcriptome profiling. This work illustrates an approach to assess inflammatory response in the epidermis by combining noninvasive sampling with high throughput RNA-sequencing, providing a foundation for biomarker discoveries and mechanism of action studies for inflammatory skin conditions.


Assuntos
Psoríase , RNA , Epiderme/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Psoríase/patologia , RNA/genética , RNA/metabolismo , Pele/patologia
10.
Inflamm Res ; 60(7): 683-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21394563

RESUMO

OBJECTIVE: The aim of this study was to compare a diverse set of peptide and small-molecule calcium channel blockers for inactivated-state block of native and recombinant N-type calcium channels using fluorescence-based and automated patch-clamp electrophysiology assays. METHODS: The pharmacology of calcium channel blockers was determined at N-type channels in IMR-32 cells and in HEK cells overexpressing the inward rectifying K(+) channel Kir2.1. N-type channels were opened by increasing extracellular KCl. In the Kir2.1/N-type cell line the membrane potential could be modulated by adjusting the extracellular KCl, allowing determination of resting and inactivated-state block of N-type calcium channels. The potency and degree of state-dependent inhibition of these blockers were also determined by automated patch-clamp electrophysiology. RESULTS: N-type-mediated calcium influx in IMR-32 cells was determined for a panel of blockers with IC(50) values of 0.001-7 µM and this positively correlated with inactivated-state block of recombinant channels measured using electrophysiology. The potency of several compounds was markedly weaker in the state-dependent fluorescence-based assay compared to the electrophysiology assay, although the degree of state-dependent blockade was comparable. CONCLUSIONS: The present data demonstrate that fluorescence-based assays are suitable for assessing the ability of blockers to selectively interact with the inactivated state of the N-type channel.


Assuntos
Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/farmacologia , Linhagem Celular , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp
11.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491907

RESUMO

Altered epidermal differentiation along with increased keratinocyte proliferation is a characteristic feature of psoriasis and pityriasis rubra pilaris (PRP). However, despite this large degree of overlapping clinical and histologic features, the molecular signatures these skin disorders share are unknown. Using global transcriptomic profiling, we demonstrate that plaque psoriasis and PRP skin lesions have high overlap, with all differentially expressed genes in PRP relative to normal skin having complete overlap with those in psoriasis. The major common pathway shared between psoriasis and PRP involves the phospholipases PLA2G2F, PLA2G4D, and PLA2G4E, which were found to be primarily expressed in the epidermis. Gene silencing each of the 3 PLA2s led to reduction in immune responses and epidermal thickness both in vitro and in vivo in a mouse model of psoriasis, establishing their proinflammatory roles. Lipidomic analyses demonstrated that PLA2s affect mobilization of a phospholipid-eicosanoid pool, which is altered in psoriatic lesions and functions to promote immune responses in keratinocytes. Taken together, our results highlight the important role of PLA2s as regulators of epidermal barrier homeostasis and inflammation, identify PLA2s as a shared pathogenic mechanism between PRP and psoriasis, and as potential therapeutic targets for both diseases.


Assuntos
Fosfolipases A2/metabolismo , Pitiríase Rubra Pilar/enzimologia , Psoríase/enzimologia , Animais , Humanos , Camundongos
12.
J Neurosci ; 28(19): 5063-71, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18463259

RESUMO

TRPA1 is an excitatory, nonselective cation channel implicated in somatosensory function, pain, and neurogenic inflammation. Through covalent modification of cysteine and lysine residues, TRPA1 can be activated by electrophilic compounds, including active ingredients of pungent natural products (e.g., allyl isothiocyanate), environmental irritants (e.g., acrolein), and endogenous ligands (4-hydroxynonenal). However, how covalent modification leads to channel opening is not understood. Here, we report that electrophilic, thioaminal-containing compounds [e.g., CMP1 (4-methyl-N-[2,2,2-trichloro-1-(4-nitro-phenylsulfanyl)-ethyl]-benzamide)] covalently modify cysteine residues but produce striking species-specific effects [i.e., activation of rat TRPA1 (rTRPA1) and blockade of human TRPA1 (hTRPA1) activation by reactive and nonreactive agonists]. Through characterizing rTRPA1 and hTRPA1 chimeric channels and point mutations, we identified several residues in the upper portion of the S6 transmembrane domains as critical determinants of the opposite channel gating: Ala-946 and Met-949 of rTRPA1 determine channel activation, whereas equivalent residues of hTRPA1 (Ser-943 and Ile-946) determine channel block. Furthermore, side-chain replacements at these critical residues profoundly affect channel function. Therefore, our findings reveal a molecular basis of species-specific channel gating and provide novel insights into how TRPA1 respond to stimuli.


Assuntos
Benzamidas/farmacologia , Canais de Cálcio/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Anquirinas , Canais de Cálcio/química , Canais de Cálcio/genética , Linhagem Celular , Humanos , Ativação do Canal Iônico/fisiologia , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Ratos , Especificidade da Espécie , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
13.
Sci Rep ; 9(1): 5310, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926837

RESUMO

Psoriasis is an immune-mediated inflammatory skin disease that affects millions worldwide. Studying immune cells involved in psoriasis pathogenesis is essential to identify effective and safe therapeutics for the disease. Using human psoriasis skin, activated macrophages were observed in both lesional and non-lesional skin, but were elevated in lesional skin. Activation of the IL-23/IL-17 pathway is integral to the development of psoriasis. To further characterize the monocyte/macrophage (Mon/Mac) population when the IL-23 pathway is activated, a murine model of intradermal injection of IL-23 was used. Flow cytometry revealed that Mon/Mac cells were the dominant immune population, particularly late in the model, highlighted by strong presence of Ly6ChiMHC IIhi cells. The Mon/Mac cells were also shown to have high expression for TNFα but not IL-17A. Prophylactic dosing of a CSF-1R inhibitor to deplete Mon/Mac cells significantly reduced several inflammatory mediators from the skin tissue suggesting a pathogenic role for Mon/Mac. Treatment dosing of the inhibitor produced a less robust effect. Mon/Mac cells were also differentiated by levels of Ki67 and TNFα expression. These data point to an important contribution of Mon/Mac cells in IL-23 related skin inflammation and suggest that these cells are a significant player in the underlying pathophysiology of psoriasis.


Assuntos
Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Biomarcadores , Citocinas/metabolismo , Dermatite/etiologia , Dermatite/metabolismo , Dermatite/patologia , Suscetibilidade a Doenças , Humanos , Imuno-Histoquímica , Interleucina-23/metabolismo , Ativação de Macrófagos/imunologia , Psoríase/patologia
14.
Sci Rep ; 9(1): 17675, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776355

RESUMO

Foxp3+ regulatory T cells (Tregs) represent a major fraction of skin resident T cells. Although normally protective, Tregs have been shown to produce pro-inflammatory cytokines in human diseases, including psoriasis. A significant hurdle in the Treg field has been the identification, or development, of model systems to study this Treg plasticity. To overcome this gap, we analyzed skin resident Tregs in a mouse model of IL-23 mediated psoriasiform dermatitis. Our results demonstrate that IL-23 drove the accumulation of Tregs; including a subpopulation that co-expressed RORγt and produced IL-17A. Genesis of this population was attenuated by a RORγt inverse agonist compound and clinically relevant therapeutics. In vitro, IL-23 drove the generation of CD4+Foxp3+RORγt+IL-17A+ cells from Treg cells. Collectively, our data shows that IL-23 drives Treg plasticity by inducing a population of CD4+Foxp3+RORγt+IL-17A+ cells that could play a role in the disease pathogenesis. Through this work, we define an in vitro system and a pre-clinical in vivo mouse model that can be used to further study Treg homeostasis and plasticity in the context of psoriasis.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Dermatite/metabolismo , Interleucina-23/farmacologia , Psoríase/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Células Cultivadas , Dermatite/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Interleucina-17/metabolismo , Interleucina-23/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/induzido quimicamente , Psoríase/patologia , Linfócitos T Reguladores/efeitos dos fármacos
15.
ACS Chem Biol ; 14(5): 857-872, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30938974

RESUMO

Interleukin-17A (IL17A) plays a critical role in the development of numerous autoimmune diseases, including psoriasis. The clinical success of IL17A neutralizing biologics in psoriasis has underlined its importance as a drug discovery target. While many studies have focused on the differentiation and trafficking of IL17A producing T-helper 17 cells, less is known about IL17A-initiated signaling events in stromal and parenchymal cells leading to psoriatic phenotypes. We sought to discover signaling nodes downstream of IL17A contributing to disease pathogenesis. Using IL17A and tumor necrosis factor α (TNF) to stimulate primary human epidermal keratinocytes, we employed two different phenotypic screening approaches. First, a library of ∼22000 annotated compounds was screened for reduced secretion of the pro-inflammatory chemokine IL8. Second, a library of 729 kinases was screened in a pooled format by utilizing CRISPR-Cas9 and monitoring IL8 intracellular staining. The highest-ranking novel hits identified in both screens were the bromodomain and extra-terminal domain (BET) family proteins and bromodomain-containing protein 2 (BRD2), respectively. Comparison of BRD2, BRD3, and BRD4 silencing with siRNA and CRISPR confirmed that BRD2 was responsible for mediating IL8 production. Pan-BRD inhibitors and BRD2 knockout also reduced IL17A/TNF-mediated CXC motif chemokines 1/2/6 (CXCL1/2/6) and granulocyte colony stimulating factor (G-CSF) production. In RNA-Seq analysis, 438 IL17A/TNF dependent genes were reduced in BRD2-deficient primary keratinocytes. KEGG pathway analysis of these genes showed enrichment in TNF signaling and rheumatoid arthritis relevant genes. Moreover, a number of genes important for keratinocyte homeostasis and cornification were dysregulated in BRD2-deficient keratinocytes. In IL17A/TNF/IL22 stimulated three-dimensional organotypic raft cultures, pan-BRD inhibition reduced inflammatory factor production but elicited aberrant cornification, consistent with RNA-Seq analysis. These studies highlight a novel role for BRDs and BRD2 in particular in IL17A-mediated inflammatory signaling.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inflamação/metabolismo , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Queratinócitos/citologia , RNA Interferente Pequeno/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Sci Rep ; 9(1): 9089, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235749

RESUMO

IL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate. Nevertheless, we performed a small molecule high-throughput screen to identify IL-36 antagonists using a novel TR-FRET binding assay. Several compounds, including 2-oxypyrimidine containing structural analogs of the marketed endothelin receptor A antagonist Ambrisentan, were identified as hits from the screen. A-552 was identified as a the most potent antagonist of human IL-36γ, but not the closely related family member IL-36α, was capable of attenuating IL-36γ induced responses in mouse and human disease models. Additionally, x-ray crystallography studies identified key amino acid residues in the binding pocket present in human IL-36γ that are absent in human IL-36α. A-552 represents a first-in-class small molecule antagonist of IL-36 signaling that could be used as a chemical tool to further investigate the role of this pathway in inflammatory skin diseases such as psoriasis.


Assuntos
Interleucina-1/antagonistas & inibidores , Psoríase/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Psoríase/metabolismo , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/patologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
17.
J Pain ; 9(5): 449-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337184

RESUMO

UNLABELLED: The pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC(1)-R) is a member of the 7-transmembrane domain, group 2 G-protein coupled receptor family. PAC(1)-Rs modulate neurotransmission and neurotrophic actions and have been implicated in both pronociception and antinociception. To better understand the role of PAC(1)-Rs in pain, PACAP 6-38, a PAC(1)-R antagonist, was evaluated in several inflammatory and neuropathic pain models after intrathecal (i.t.) administration. PACAP 6-38 potently reduced mechanical allodynia in a neuropathic spinal nerve ligation model (77% +/- 15% maximal effect at 12 nmol, P < .01) and was also effective in reducing thermal hyperalgesia in the carrageenan model of inflammatory pain (89% +/- 17% maximal effect at 12 nmol, P < .01). Although nociceptive responses were also attenuated with PACAP 6-38 in a dose-dependent manner in models of chronic inflammatory and persistent pain, no effects on motor performance were observed at analgesic doses. Taken together, these data demonstrate that blockade of the PAC(1)-R/PACAP complex by PACAP 6-38 can effectively attenuate thermal hyperalgesia and mechanical allodynia associated with inflammatory and neuropathic pain states. These results further emphasize that at the level of the spinal cord, PAC(1)-R activation is pronociceptive. PERSPECTIVE: This article presents the analgesic profile generated by the blockade, at the spinal cord level, of the PAC-1 receptor by a potent peptide antagonist. This comprehensive data set demonstrates that if small molecule PAC-1 receptor antagonists could be identified, they would potentially produce broad-spectrum analgesia in both inflammatory and neuropathic pain states.


Assuntos
Inflamação/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Injeções Espinhais , Ligadura , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/fisiopatologia , Medição da Dor , Fragmentos de Peptídeos/farmacologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores
19.
Life Sci ; 82(1-2): 30-40, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18054963

RESUMO

ASIC2a (BNaC1 or MDEG) is distributed throughout the nervous system and potentially involved in mechanosensation, hearing, vision, and taste functions. However, pharmacological properties of ASIC2 homomers including the mechanism of inhibition by amiloride remain unclear. In this study, we describe the properties of hASIC2a stably expressed in Ltk(-) cells, the first reported stable cell line expressing any ASICs subunit, by standard whole cell voltage clamp method. In response to pH 4.0, at -80 mV, hASIC2a cells exhibited rapidly activating fast transient inward current ( approximately 100 pA/pF) that was followed by a sustained current ( approximately 13 pA/pF). In contrast, untransfected Ltk(-) cells showed only a very small rapidly activating non-inactivating inward current ( approximately 4 pA/pF). The magnitude of hASIC2a transient current was pH dependent with pH(50) values for activation and inactivation of approximately 4.2 and approximately 5.5, respectively. Ion substitution experiments revealed the following rank order of permeability: Na(+)>K(+)>Ca(2+) for the transient current. Amiloride reversibly inhibited the pH 4.0 evoked transient current with IC(50) values of approximately 20 microM at both -30 and -80 mV holding potentials, indicating that the interactions are voltage independent when nearly all amiloride is protonated. Amiloride (100 microM) did not inhibit ASIC2a transient current when pre-applied in pH 7.4 and pH 4.0 currents obtained in absence of amiloride, but it did inhibit currents when co-applied at pH 4.0 suggesting open channel blockade. In summary, ASIC2a stable cell line serves as a useful model system to study the pharmacological properties of ASIC2a currents, potentially contributing to pH-evoked responses in cells of the dorsal root ganglion and the central nervous system.


Assuntos
Linhagem Celular , Canais Epiteliais de Sódio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Canais Iônicos Sensíveis a Ácido , Amilorida/farmacologia , Animais , Clonagem Molecular , Canais de Sódio Degenerina , Eletrofisiologia , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/genética , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Análise de Regressão , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção
20.
J Med Chem ; 50(24): 6265-73, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17973362

RESUMO

A series of novel cyanoguanidine derivatives was designed and synthesized. Condensation of N-(1-benzotriazol-1-yl-2,2-dichloropropyl)-substituted benzamides with N-(substituted-pyridin-3-yl)-N'-cyanoguanidines furnished N-{2,2-dichloro-1-[N'-(substituted-pyridin-3-yl)-N''-cyanoguanidino]propyl}-substituted benzamide derivatives. These agents were glyburide-reversible potassium channel openers and hyperpolarized human bladder cells as assessed by the FLIPR membrane potential dye (KATP-FMP). These compounds were also potent full agonists in relaxing electrically stimulated pig bladder strips, an in vitro model of overactive bladder. The most active compound 9 was evaluated for in vivo efficacy and selectivity in a pig model of bladder instability. Preliminary pharmacokinetic studies in dog demonstrated excellent oral bioavailability and a t1/2 of 15 h. The synthesis, SAR studies, and biological properties of these agents are discussed.


Assuntos
Benzamidas/síntese química , Guanidinas/síntese química , Canais KATP/fisiologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Administração Oral , Animais , Benzamidas/farmacocinética , Benzamidas/farmacologia , Disponibilidade Biológica , Cristalografia por Raios X , Cães , Estimulação Elétrica , Feminino , Guanidinas/farmacocinética , Guanidinas/farmacologia , Humanos , Técnicas In Vitro , Ativação do Canal Iônico , Canais KATP/agonistas , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Relação Estrutura-Atividade , Suínos , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Bexiga Urinária Hiperativa/fisiopatologia , Urodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA