Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(21): 5988-5998, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37476859

RESUMO

The ongoing climate crisis merits an urgent need to devise management approaches and new technologies to reduce atmospheric greenhouse gas concentrations (GHG) in the near term. However, each year that GHG concentrations continue to rise, pressure mounts to develop and deploy atmospheric CO2 removal pathways as a complement to, and not replacement for, emissions reductions. Soil carbon sequestration (SCS) practices in working lands provide a low-tech and cost-effective means for removing CO2 from the atmosphere while also delivering co-benefits to people and ecosystems. Our model estimates suggest that, assuming additive effects, the technical potential of combined SCS practices can provide 30%-70% of the carbon removal required by the Paris Climate Agreement if applied to 25%-50% of the available global land area, respectively. Atmospheric CO2 drawdown via SCS has the potential to last decades to centuries, although more research is needed to determine the long-term viability at scale and the durability of the carbon stored. Regardless of these research needs, we argue that SCS can at least serve as a bridging technology, reducing atmospheric CO2 in the short term while energy and transportation systems adapt to a low-C economy. Soil C sequestration in working lands holds promise as a climate change mitigation tool, but the current rate of implementation remains too slow to make significant progress toward global emissions goals by 2050. Outreach and education, methodology development for C offset registries, improved access to materials and supplies, and improved research networks are needed to accelerate the rate of SCS practice implementation. Herein, we present an argument for the immediate adoption of SCS practices in working lands and recommendations for improved implementation.


Assuntos
Efeito Estufa , Solo , Humanos , Ecossistema , Dióxido de Carbono/análise , Sequestro de Carbono , Carbono , Tecnologia , Agricultura
2.
J Sci Food Agric ; 100(6): 2800-2806, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975411

RESUMO

BACKGROUND: Contamination of food or the environment by fungi, especially those resistant to conventional fungicides or drugs, represents a hazard to human health. The objective of this study is to identify safe, natural antifungal agents that can remove fungal pathogens or contaminants rapidly from food and / or environmental sources. RESULTS: Fifteen antifungal compounds (nine benzo derivatives as candidates; six conventional fungicides as references) were investigated. Three benzo analogs, namely octyl gallate (OG), trans-cinnamaldehyde (CA), and 2-hydroxy-5-methoxybenzaldehyde (2H5M), at 1 g L-1 (3.54 mmol), 1 mL L-1 (7.21 mmol), 1 mL L-1 (5.39 mmol), respectively, achieved ≥99.9% fungal death after 0.5, 2.5 or 24 h of treatments, respectively, in in vitro phosphate-buffered saline (PBS) bioassay. However, when OG, CA, and 2H5M were examined in commercial food matrices, organic apple, or grape juices, only CA maintained a similar level of antifungal activity, compared with a PBS bioassay. trans-Cinnamaldehyde showed higher antifungal activity at pH 3.5, equivalent to that of commercial fruit juices, than at pH 5.6. In soil sample tests, the application of 1 mL L-1 (7.21 mmol) CA to conventional maize / tomato soil samples (pH 6.8) for 2.5 h resulted in ≥99.9% fungal death, indicating CA could also eliminate fungal contaminants in soil. While the conventional fungicide thiabendazole exerted antifungal activity comparable to CA, thiabendazole enhanced the production of carcinogenic aflatoxins by Aspergillus flavus, an undesirable side effect. CONCLUSION: trans-Cinnamaldehyde could be developed as a potent antifungal agent in food processing or soil sanitation by reducing the time / cost necessary for fungal removal. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Microbiologia de Alimentos , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Microbiologia do Solo , Acroleína/análogos & derivados , Acroleína/farmacologia , Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Benzaldeídos/farmacologia , Contaminação de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Concentração de Íons de Hidrogênio
3.
J Environ Sci Health B ; 55(11): 990-1001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877275

RESUMO

Application of municipal biosolids in agriculture present a concern with potential uptake and bioaccumulation of pharmaceutical compounds from biosolids into agronomic plants. We evaluated the efficacy of biochar as a soil amendment to minimize uptake of antimicrobial agents (ciprofloxacin, triclocarban, and triclosan) in lettuce (Lactuca sativa) and carrot (Daucus carota) plants. Biochar reduced the concentration of ciprofloxacin and triclocarban in lettuce leaves and resulted in a 67% reduction of triclosan in carrot roots. There was no substantial difference in pharmaceutical concentrations in carrot and lettuce plant matter at low (2.0 g kg-1 soil) and high (20.4 g kg-1 soil) rates of applied biochar. The co-amendment of biochar and biosolids increased soil pH and nutrient content which were positively correlated with an increase in lettuce shoot biomass. Our results demonstrate the potential efficacy of using walnut shell biochar as a sorbent for pharmaceutical contaminants in soil without negatively affecting plant growth.


Assuntos
Carbanilidas/farmacologia , Carvão Vegetal , Ciprofloxacina/farmacologia , Daucus carota/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Triclosan/farmacocinética , Agricultura/métodos , Anti-Infecciosos/farmacocinética , Biomassa , Biossólidos , Daucus carota/crescimento & desenvolvimento , Daucus carota/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética
4.
Glob Chang Biol ; 25(11): 3753-3766, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301684

RESUMO

Increasing soil organic carbon (SOC) via organic inputs is a key strategy for increasing long-term soil C storage and improving the climate change mitigation and adaptation potential of agricultural systems. A long-term trial in California's Mediterranean climate revealed impacts of management on SOC in maize-tomato and wheat-fallow cropping systems. SOC was measured at the initiation of the experiment and at year 19, at five depth increments down to 2 m, taking into account changes in bulk density. Across the entire 2 m profile, SOC in the wheat-fallow systems did not change with the addition of N fertilizer, winter cover crops (WCC), or irrigation alone and decreased by 5.6% with no inputs. There was some evidence of soil C gains at depth with both N fertilizer and irrigation, though high variation precluded detection of significant changes. In maize-tomato rotations, SOC increased by 12.6% (21.8 Mg C/ha) with both WCC and composted poultry manure inputs, across the 2 m profile. The addition of WCC to a conventionally managed system increased SOC stocks by 3.5% (1.44 Mg C/ha) in the 0-30 cm layer, but decreased by 10.8% (14.86 Mg C/ha) in the 30-200 cm layer, resulting in overall losses of 13.4 Mg C/ha. If we only measured soil C in the top 30 cm, we would have assumed an increase in total soil C increased with WCC alone, whereas in reality significant losses in SOC occurred when considering the 2 m soil profile. Ignoring the subsoil carbon dynamics in deeper layers of soil fails to recognize potential opportunities for soil C sequestration, and may lead to false conclusions about the impact of management practices on C sequestration.


Assuntos
Sequestro de Carbono , Compostagem , Agricultura , California , Carbono , Nitrogênio , Solo
5.
Ecology ; 99(2): 503, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29338085

RESUMO

The Century Experiment at the Russell Ranch Sustainable Agriculture Facility at the University of California, Davis provides long-term agroecological data from row crop systems in California's Central Valley starting in 1993. The Century Experiment was initially designed to study the effects of a gradient of water and nitrogen availability on soil properties and crop performance in ten different cropping systems to measure tradeoffs and synergies between agricultural productivity and sustainability. Currently systems include 11 different cropping systems-consisting of four different crops and a cover crop mixture-and one native grass system. This paper describes the long-term core data from the Century Experiment from 1993-2014, including crop yields and biomass, crop elemental contents, aerial-photo-based Normalized Difference Vegetation Index data, soil properties, weather, chemical constituents in irrigation water, winter weed populations, and operational data including fertilizer and pesticide application amounts and dates, planting dates, planting quantity and crop variety, and harvest dates. This data set represents the only known long-term set of data characterizing food production and sustainability in irrigated and rainfed Mediterranean annual cropping systems. There are no copyright restrictions associated with the use of this dataset.

6.
Microbiology (Reading) ; 162(9): 1563-1571, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450417

RESUMO

Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.


Assuntos
Proteínas de Bactérias/genética , Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Éteres Metílicos/metabolismo , Proteínas de Bactérias/metabolismo , Betaproteobacteria/isolamento & purificação , Biodegradação Ambiental , Transcrição Gênica
7.
J Environ Sci Health B ; 50(8): 544-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26065514

RESUMO

Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits.


Assuntos
Carvão Vegetal/química , Herbicidas/química , Compostos de Fenilureia/química , Poluentes do Solo/química , Solo/química , Adsorção , Agricultura , Diurona/química , Linurona/química , Esterco , Compostos de Metilureia/química , Madeira
8.
Biodegradation ; 25(1): 41-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23613160

RESUMO

A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 µg L(-1)), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes.


Assuntos
Betaproteobacteria/metabolismo , Éteres Metílicos/metabolismo , RNA Ribossômico 16S/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Carga Bacteriana , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos , California , Água Subterrânea/química , Água Subterrânea/microbiologia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
9.
Microbiology (Reading) ; 159(Pt 2): 307-315, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197174

RESUMO

The nosZ gene encodes nitrous oxide reductase, a key enzyme in the nitrous oxide reduction that occurs during complete denitrification. Many conventional approaches have used Proteobacteria-based primers to detect nosZ in environmental samples. However, these primers often fail to detect nosZ in non-Proteobacteria strains, including Firmicutes (Gram-positive) and Bacteroidetes. In this study, newly designed nosZ primers successfully amplified this gene from five Geobacillus species (Firmicutes). The primers were used to construct nosZ clone libraries from DNA extracted from sludge and domestic animal feedlot soils, all with high organic carbon contents. After DNA sequencing, phylogenetic analysis identified many new nosZ sequences with high levels of homology to nosZ from Bacteroidetes, probably because of the high sequence similarity of nosZ from Firmicutes and Bacteroidetes, and a predominance of Bacteroidetes in feedlot environments. Three sets of new quantitative real-time PCR (qPCR) primers based on our clone library sequences were designed and tested for their specificities. Our data showed that only Bacteroidetes-related nosZ sequences were amplified, whereas conventional Proteobacteria-based primers amplified only Proteobacteria-related nosZ. Quantitative analysis of nosZ with the new qPCR primers recovered ~10(4) copies per 100 ng DNA. Thus, it appears that amplification with conventional primers is insufficient for developing an understanding of the diversity and abundance of nosZ genes in the environment.


Assuntos
Carga Bacteriana/métodos , Bacteroidetes/enzimologia , Primers do DNA/genética , Bactérias Gram-Positivas/enzimologia , Oxirredutases/genética , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Carbono/análise , DNA Bacteriano/química , DNA Bacteriano/genética , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Dados de Sequência Molecular , Compostos Orgânicos/análise , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo
10.
Water Resour Res ; 49(8): 4907-4926, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24678130

RESUMO

In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

11.
Water Environ Res ; 85(12): 2237-2242, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24597039

RESUMO

Triclosan (TCS) is a widely used antimicrobial agent found at high concentrations in biosolids produced during municipal wastewater treatment. The effect of adding TCS, in the presence or absence of biosolids, on the composition of an agricultural soil microbial community was measured using phospholipid fatty acid analysis (PLFA). Most changes observed in microbial community composition were attributable to the addition of biosolids or to the passage of time, with smaller changes due to TCS exposure, regardless of the presence of biosolids. TCS slightly reduced the relative abundance of Gram-positive and Gram-negative bacteria and fungi, with or without biosolids. Bacteria were more sensitive than eukaryotes, consistent with the mode of action of TCS, which selectively targets fatty acid synthesis and disrupts cell membranes of bacteria. TCS slightly increased biomarkers of microbial stress, but stress biomarkers were lower in all biosolid treated soils, presumably due to increased availability of nutrients mitigating potential TCS toxicity.


Assuntos
Agricultura , Triclosan/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Solo/química , Poluentes do Solo/toxicidade
12.
Hydrogeol J ; 21(7): 1539-1554, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24672283

RESUMO

Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs (m1), and tracer cumulative mass discharge (Md) through control planes combined with hydraulic head observations (h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.

13.
Ground Water Monit Remediat ; 33(4): 57-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25525320

RESUMO

Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate.

14.
Sci Total Environ ; 854: 158508, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063938

RESUMO

Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.


Assuntos
Ascomicetos , Microbiota , Solo/química , Florestas , Bactérias , Microbiologia do Solo
16.
Ground Water Monit Remediat ; 32(3): 52-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23358537

RESUMO

The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 µg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.

17.
JAMA Netw Open ; 5(12): e2246158, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508217

RESUMO

Importance: Food insecurity and HIV health outcomes are linked through nutritional, mental health, and health behavior pathways. Objective: To examine the effects of a multisectoral agriculture and livelihood intervention on HIV viral suppression and nutritional, mental health, and behavioral outcomes among HIV-positive adults prescribed antiretroviral therapy (ART). Design, Setting, and Participants: This cluster randomized clinical trial was performed in 8 pairs of health facilities in Kenya. Participants were 18 years or older, living with HIV, and receiving ART for longer than 6 months; had moderate to severe food insecurity; and had access to arable land and surface water and/or shallow aquifers. Participants were followed up every 6 months for 24 months. Data were collected from June 23, 2016, to June 13, 2017, with follow-up completed by December 16, 2019. Data were analyzed from June 25 to August 31, 2020, using intention-to-treat and per-protocol methods. Interventions: A loan to purchase a human-powered irrigation pump, fertilizer, seeds, and pesticides combined with the provision of training in sustainable agriculture and financial literacy. Main Outcomes and Measures: The primary outcome was the relative change from baseline to the end of follow-up in viral load suppression (≤200 copies/mL) compared between study groups using difference-in-differences analyses. Secondary outcomes included clinic attendance, ART adherence, food insecurity, depression, self-confidence, and social support. Results: A total of 720 participants were enrolled (396 women [55.0%]; mean [SD] age, 40.38 [9.12] years), including 366 in the intervention group and 354 in the control group. Retention included 677 (94.0%) at the 24-month visit. HIV viral suppression improved in both groups from baseline to end of follow-up from 314 of 366 (85.8%) to 327 of 344 (95.1%) in the intervention group and from 291 of 353 (82.4%) to 314 of 333 (94.3%) in the control group (P = .86). Food insecurity decreased more in the intervention than the control group (difference in linear trend, -3.54 [95% CI, -4.16 to -2.92]). Proportions of those with depression during the 24-month follow-up period declined more in the intervention group (from 169 of 365 [46.3%] to 36 of 344 [10.5%]) than the control group (106 of 354 [29.9%] to 41 of 333 [12.3%]; difference in trend, -0.83 [95% CI, -1.45 to -0.20]). Self-confidence improved more in the intervention than control group (difference in trend, -0.37 [95% CI, -0.59 to -0.15]; P = .001), as did social support (difference in trend, -3.63 [95% CI, -4.30 to -2.95]; P < .001). Conclusions and Relevance: In this cluster randomized trial, the multisectoral agricultural intervention led to demonstrable health and other benefits; however, it was not possible to detect additional effects of the intervention on HIV clinical indicators. Agricultural interventions that improve productivity and livelihoods hold promise as a way of addressing food insecurity and the underpinnings of poor health among people living with HIV in resource-limited settings. Trial Registration: ClinicalTrials.gov Identifier: NCT02815579.


Assuntos
Infecções por HIV , Adulto , Feminino , Humanos , Carga Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/diagnóstico , Agricultura , Instalações de Saúde , Avaliação de Resultados em Cuidados de Saúde
18.
Soil Biol Biochem ; 43(1): 20-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22267876

RESUMO

This study coupled stable isotope probing with phospholipid fatty acid analysis ((13)C-PLFA) to describe the role of microbial community composition in the short-term processing (i.e., C incorporation into microbial biomass and/or deposition or respiration of C) of root- versus residue-C and, ultimately, in long-term C sequestration in conventional (annual synthetic fertilizer applications), low-input (synthetic fertilizer and cover crop applied in alternating years), and organic (annual composted manure and cover crop additions) maize-tomato (Zea mays - Lycopersicum esculentum) cropping systems. During the maize growing season, we traced (13)C-labeled hairy vetch (Vicia dasycarpa) roots and residues into PLFAs extracted from soil microaggregates (53-250 µm) and silt-and-clay (<53 µm) particles. Total PLFA biomass was greatest in the organic (41.4 nmol g(-1) soil) and similar between the conventional and low-input systems (31.0 and 30.1 nmol g(-1) soil, respectively), with Gram-positive bacterial PLFA dominating the microbial communities in all systems. Although total PLFA-C derived from roots was over four times greater than from residues, relative distributions (mol%) of root- and residue-derived C into the microbial communities were not different among the three cropping systems. Additionally, neither the PLFA profiles nor the amount of root- and residue-C incorporation into the PLFAs of the microaggregates were consistently different when compared with the silt-and-clay particles. More fungal PLFA-C was measured, however, in microaggregates compared with silt-and-clay. The lack of differences between the mol% within the microbial communities of the cropping systems and between the PLFA-C in the microaggregates and the silt-and-clay may have been due to (i) insufficient differences in quality between roots and residues and/or (ii) the high N availability in these N-fertilized cropping systems that augmented the abilities of the microbial communities to process a wide range of substrate qualities. The main implications of this study are that (i) the greater short-term microbial processing of root- than residue-C can be a mechanistic explanation for the higher relative retention of root- over residue-C, but microbial community composition did not influence long-term C sequestration trends in the three cropping systems and (ii) in spite of the similarity between the microbial community profiles of the microaggregates and the silt-and-clay, more C was processed in the microaggregates by fungi, suggesting that the microaggregate is a relatively unique microenvironment for fungal activity.

19.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200179, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365819

RESUMO

Soil and soil biodiversity play critical roles in Nature's Contributions to People (NCP) # 10, defined as Nature's ability to regulate direct detrimental effects on humans, and on human-important plants and animals, through the control or regulation of particular organisms considered to be harmful. We provide an overview of pathogens in soil, focusing on human and crop pathogens, and discuss general strategies, and examples, of how soils' extraordinarily diverse microbial communities regulate soil-borne pathogens. We review the ecological principles underpinning the regulation of soil pathogens, as well as relationships between pathogen suppression and soil health. Mechanisms and specific examples are presented of how soil and soil biota are involved in regulating pathogens of humans and plants. We evaluate how specific agricultural management practices can either promote or interfere with soil's ability to regulate pathogens. Finally, we conclude with how integrating soil, plant, animal and human health through a 'One Health' framework could lead to more integrated, efficient and multifunctional strategies for regulating detrimental organisms and processes. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Biodiversidade , Doenças das Plantas/microbiologia , Microbiologia do Solo , Solo/química , Microbiota , Saúde Única , Doenças das Plantas/prevenção & controle
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200185, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365826

RESUMO

This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Conservação dos Recursos Naturais , Solo , Desenvolvimento Sustentável , Nações Unidas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA