Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 239(0): 357-374, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35862189

RESUMO

Chalcopyrite Cu(In,Ga)Se2 (CIGSe) solar absorbers are renowned for delivering high solar power conversion efficiency despite containing high concentration of lattice defects amounting to copper deficiencies of several atomic percent. The unique ability to incorporate this deficiency without triggering decomposition (i.e. "tolerance to off-stoichiometry") is viewed by many as the key feature of CIGSe. In principle, this property could benefit any solar absorber, but remarkably little attention has been paid to it so far. In this study, we assess the tolerance to off-stoichiometry of thin-film photovoltaic materials by carrying out ab initio analysis of group-I-poor ordered defect compounds (ODCs) in the extended family of I-III-VI systems (where I = Cu, Ag, III = Al, Ga, In, and VI = S, Se, Te). We analyze convex hulls and structural evolution with respect to group-I content, link them with experimental phase diagrams, and determine two empirical principles for the future identification of solar energy materials with high tolerance to off-stoichiometry. Practical implications for the deposition of I-III-VI absorbers are also discussed in light of our computational results and recent experimental findings.

6.
ACS Appl Mater Interfaces ; 13(6): 7188-7199, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33534535

RESUMO

Silver alloying of Cu(In,Ga)Se2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to ∼60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to ∼20 ppm for films without Ag and up to ∼200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices.

7.
ACS Appl Mater Interfaces ; 8(28): 18600-7, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27356214

RESUMO

Formation of Na-containing surface compounds is an important phenomenon in the Cu2ZnSnS4 (CZTS) quaternary material synthesis for solar cell applications. Still, identification of these compounds and the understanding of their potential influence on buffer layer growth and device performance are scarce. In this work, we discovered that the evolution of Na-S(-O) compounds on the CZTS surface substantially affect the solution/CZTS interface during the chemical bath deposition of CdS buffer film. We showed that Na2S negatively affects the growth of CdS, and that this compound is likely to form on the CZTS surface after annealing. It was also demonstrated that the Na2S compound can be oxidized to Na2SO4 by air exposure of the annealed CZTS surface or be removed using water dipping instead of the commonly used KCN etching process, resulting in significantly better quality of the CdS layer. Lastly, 6.5% CZTS solar cells were fabricated with air exposure treatment without incorporation of the KCN etching process. This work provides new insight into the growth of the CdS/CZTS interface for solar cell applications and opens new possibilities for improving likewise Cd-free buffer materials that are grown with a similar chemical bath deposition process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA