Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circulation ; 126(22): 2601-11, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23114789

RESUMO

BACKGROUND: Hypoxia induces an inflammatory response in the lung manifested by alternative activation of macrophages with elevation of proinflammatory mediators that are critical for the later development of hypoxic pulmonary hypertension. Mesenchymal stromal cell transplantation inhibits lung inflammation, vascular remodeling, and right heart failure and reverses hypoxic pulmonary hypertension in experimental models of disease. In this study, we aimed to investigate the paracrine mechanisms by which mesenchymal stromal cells are protective in hypoxic pulmonary hypertension. METHODS AND RESULTS: We fractionated mouse mesenchymal stromal cell-conditioned media to identify the biologically active component affecting in vivo hypoxic signaling and determined that exosomes, secreted membrane microvesicles, suppressed the hypoxic pulmonary influx of macrophages and the induction of proinflammatory and proproliferative mediators, including monocyte chemoattractant protein-1 and hypoxia-inducible mitogenic factor, in the murine model of hypoxic pulmonary hypertension. Intravenous delivery of mesenchymal stromal cell-derived exosomes (MEX) inhibited vascular remodeling and hypoxic pulmonary hypertension, whereas MEX-depleted media or fibroblast-derived exosomes had no effect. MEX suppressed the hypoxic activation of signal transducer and activator of transcription 3 (STAT3) and the upregulation of the miR-17 superfamily of microRNA clusters, whereas it increased lung levels of miR-204, a key microRNA, the expression of which is decreased in human pulmonary hypertension. MEX produced by human umbilical cord mesenchymal stromal cells inhibited STAT3 signaling in isolated human pulmonary artery endothelial cells, demonstrating a direct effect of MEX on hypoxic vascular cells. CONCLUSION: This study indicates that MEX exert a pleiotropic protective effect on the lung and inhibit pulmonary hypertension through suppression of hyperproliferative pathways, including STAT3-mediated signaling induced by hypoxia.


Assuntos
Exossomos/fisiologia , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Exossomos/metabolismo , Fibroblastos/citologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Hipóxia/fisiopatologia , Hipóxia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , Comunicação Parácrina/fisiologia , Pneumonia/patologia , Pneumonia/fisiopatologia , Pneumonia/terapia , Fator de Transcrição STAT3/metabolismo , Geleia de Wharton/citologia
2.
Cancer Rep (Hoboken) ; 6(3): e1746, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382570

RESUMO

BACKGROUND: Previous population health studies examining adults with acute myeloid leukemia (AML); however many of these, such as the Cancer Genome Atlas, are derived from databases collected by large urban centers. Due to its unique industry and environmental exposures, we hypothesized the West Virginia Appalachian population may have different mutational trends and clinical outcomes. AIMS: To address the concern of under-representation of rural minorities in cancer genomic databases, we performed exploratory whole exome sequencing in patients with newly diagnosed AML in rural Appalachia. METHODS & RESULTS: Correlations between genetic variants and clinical outcome variables were examined via retrospective chart review. A total of 26 patients were identified and whole exome sequencing was performed. Median age was 68 years old. Twenty-one patients had de novo AML (84%). As per European LeukemiaNet (ELN) criteria, 8 patients were favorable (32%), 12 were intermediate (48%), and 5 were adverse risk (20%). Eight patients proceeded to transplant. The median progression-free survival and overall survival were 16.5 months and 26.6 months, respectively. We noted an increased tumor mutation burden and a higher frequency of specific known driver mutations when compared to The Cancer Genome Atlas database; we also found novel mutations in MUC3A, MUC5AC, HCAR3, ORT2B, and PABPC. Survival outcomes were slightly lower than national average and BCOR mutation correlated with inferior outcomes. CONCLUSION: Our findings provide novel insight into detrimental mutations in AML in a rural, underrepresented population. We discovered several novel mutations and higher frequency of some known driver mutations, which will help us identify therapeutic targets to improve patient outcomes.


Assuntos
Leucemia Mieloide Aguda , Adulto , Humanos , Idoso , Estudos Retrospectivos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Biomarcadores Tumorais , Região dos Apalaches/epidemiologia
3.
Int J Hematol ; 112(1): 118-121, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32125605

RESUMO

Progressive multifocal leukoencephalopathy (PML) remains a life-threatening central nervous system infection in immunocompromised patients. Although outcomes have improved in cases that immune reconstitution is feasible with anti-retroviral therapy (ART) in HIV + patients or natalizumab removal in those with multiple sclerosis, in individuals with hematological malignancies, the prognosis is usually dismal. Anti-viral treatments have been largely ineffective, but immunotherapy-based approaches with checkpoint inhibitors and adoptive virus-specific T cells' transfer are currently explored in clinical trials. PML has not been described as a cause of encephalopathy after CAR T therapy. We report the first case of PML 7 months after lymphodepleting chemotherapy with fludarabine/cyclophosphamide and anti-CD19-directed CAR T therapy in a patient with relapsed diffuse large B-cell lymphoma who relapsed fast after a previous autologous hematopoietic stem cell transplant. She remains alive 12 months after diagnosis with stabilization of her symptoms with a combination of therapies targeting viral replication and immunotherapy.


Assuntos
Transferência Adotiva/métodos , Antígenos CD19/uso terapêutico , Hospedeiro Imunocomprometido , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/terapia , Receptores de Antígenos Quiméricos/administração & dosagem , Linfócitos T , Idoso , Antígenos CD19/administração & dosagem , Antineoplásicos/uso terapêutico , Produtos Biológicos , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Linfoma Difuso de Grandes Células B/terapia , Recidiva , Transplante Autólogo
4.
Antioxid Redox Signal ; 21(13): 1905-15, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24382303

RESUMO

SIGNIFICANCE: Bronchopulmonary dysplasia (BPD), also known as chronic lung disease of infancy, is a major complication of preterm birth that, despite improvements in neonatal respiratory support and perinatal care, remains an important cause of morbidity and mortality, often with severe adverse neurodevelopmental sequelae. Even with major advances in our understanding of the pathogenesis of this disease, BPD remains essentially without adequate treatment. RECENT ADVANCES: Cell-based therapies arose as a promising treatment for acute and chronic lung injury in many experimental models of disease. Currently, more than 3000 human clinical trials employing cell therapy for the treatment of diverse diseases, including cardiac, neurologic, immune, and respiratory conditions, are ongoing or completed. Among the treatments, mesenchymal stem cells (MSCs) are the most studied and have been extensively tested in experimental models of BPD, pulmonary hypertension, pulmonary fibrosis, and acute lung injury. CRITICAL ISSUES: Despite the promising potential, MSC therapy for human lung disease still remains at an experimental stage and optimal transplantation conditions need to be determined. Although the mechanism of MSC action can be manifold, accumulating evidence suggests a predominant paracrine, immunomodulatory, and cytoprotective effect. FUTURE DIRECTIONS: The current review summarizes the effect of MSC treatment in models of lung injury, including BPD, and focuses on the MSC secretome and, specifically, MSC-derived microvesicles as potential key mediators of therapeutic action that can be the focus of future therapies.


Assuntos
Vesículas Citoplasmáticas/transplante , Pneumopatias/fisiopatologia , Pneumopatias/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA