RESUMO
IL-12 is a pleotropic inflammatory cytokine, which has broad stimulatory effects on various immune cell populations, making it an attractive target for cancer immunotherapy. However, despite generating robust antitumor activity in syngeneic murine tumor models, clinical administration of IL-12 has been limited by severe toxicity. mWTX-330 is a selectively inducible INDUKINE molecule comprised of a half-life extension domain and an inactivation domain linked to chimeric IL-12 by tumor protease-sensitive linkers. Systemic administration of mWTX-330 in mice was well tolerated, resulted in robust antitumor immunity in multiple tumor models, and preferentially activated tumor-infiltrating immune cells rather than immune cells present in peripheral tissues. Antitumor activity was dependent on in vivo processing of the protease cleavable linkers and required CD8+ T cells for full efficacy. Within the tumor, mWTX-330 increased the frequency of cross-presenting dendritic cells (DC), activated natural killer (NK) cells, skewed conventional CD4+ T cells toward a T helper 1 (TH1) phenotype, drove regulatory T cells (Treg) fragility, and increased the frequency of polyfunctional CD8+ T cells. mWTX-330 treatment also increased the clonality of tumor-infiltrating T cells by expanding underrepresented T-cell receptor (TCR) clones, drove CD8+ T and NK cells towards increased mitochondrial respiration and fitness, and decreased the frequency of TOX+ exhausted CD8+ T cells within the tumor. A fully human version of this INDUKINE molecule was stable in human serum, was reliably and selectively processed by human tumor samples, and is currently in clinical development.
Assuntos
Interleucina-12 , Melanoma Experimental , Camundongos , Humanos , Animais , Interleucina-12/genética , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Peptídeo HidrolasesRESUMO
IL-2 is a cytokine clinically approved for the treatment of melanoma and renal cell carcinoma. Unfortunately, its clinical utility is hindered by serious side effects driven by the systemic activity of the cytokine. Here, we describe the design and characterization of a conditionally activated IL-2 prodrug, WTX-124, that takes advantage of the dysregulated protease milieu of tumors. WTX-124 was engineered as a single molecule containing an inactivation domain and a half-life extension domain that are tethered to a fully active IL-2 by protease-cleavable linkers. We show that the inactivation domain prevented IL-2 from binding to its receptors in nontumor tissues, thereby minimizing the toxicity associated with systemic exposure to IL-2. The half-life extension element improves the pharmacokinetic profile of WTX-124 over free IL-2, allowing for greater exposure. WTX-124 was preferentially activated in tumor tissue by tumor-associated proteases, releasing active IL-2 in the tumor microenvironment. In vitro assays confirmed that the activity of WTX-124 was dependent on proteolytic activation, and in vivo WTX-124 treatment resulted in complete rejection of established tumors in a cleavage-dependent manner. Mechanistically, WTX-124 treatment triggered the activation of T cells and natural killer (NK) cells, and markedly shifted the immune activation profile of the tumor microenvironment, resulting in significant inhibition of tumor growth in syngeneic tumor models. Collectively, these data demonstrate that WTX-124 minimizes the toxicity of IL-2 treatment in the periphery while retaining the full pharmacology of IL-2 in the tumor microenvironment, supporting its further development as a cancer immunotherapy treatment. See related Spotlight by Silva, p. 544.
Assuntos
Interleucina-2 , Melanoma , Citocinas , Humanos , Imunoterapia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Peptídeo Hidrolases , Microambiente TumoralRESUMO
Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.
Assuntos
Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Mutação/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Quinazolinas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Western Blotting , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , DNA/química , DNA/genética , Feminino , Humanos , Imunoprecipitação , Camundongos , Camundongos Nus , Chaperonas Moleculares , Piperazinas/isolamento & purificação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Quinazolinas/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) is a validated immune checkpoint protein expressed on memory CD4+T-cellls, Tregs, CD8+T-cell and natural killer (NK) cells. ASP8374 is a fully human monoclonal immunoglobulin (Ig) G4 antibody designed to block the interaction of TIGIT with its ligands and inhibit TIGIT signaling. ASP8374 exhibited high affinity binding to TIGIT and increased interferon (IFN)-γ production of cultured peripheral blood mononuclear cells (PBMCs) in a titratable manner. When used in combination with pembrolizumab, an anti-programmed death-1 (PD-1) antibody, ASP8374 induced higher T-cell activation in vitro than either treatment alone. An anti-mouse TIGIT antibody surrogate, mSEC1, displayed anti-tumor efficacy in an MC38 syngeneic mouse tumor model alone and in combination with an anti-programmed death-ligand 1 (PD-L1) antibody. In an additional syngeneic mouse tumor model (CT26), while mSEC1 alone did not demonstrate anti-tumor efficacy, mSEC1 combined with an anti-PD-1 antibody enhanced anti-tumor efficacy above that of the anti-PD-1 antibody alone. These data provide evidence that ASP8374 has therapeutic potential for advanced malignancies.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Receptores Imunológicos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Feminino , Humanos , CamundongosRESUMO
As a tumor suppressor protein, p53 plays a crucial role in cancer development. Direct associations between p53, apoptosis and drug response suggest that targeting genes/gene products downstream of p53 may have clinical benefits. The completion of the human genome project and the availability of microarray technology have led to new ways in which to define the global regulatory network of p53 and to search for oncogenes in the p53 pathway. A crucial step toward antitumor drug discovery is the mapping of p53 transcriptomes onto cancer phenomes. In this review, recent developments in the genome-wide search of p53 target genes are discussed, along with current efforts in high-throughput antitumor target discovery in the p53 pathway and recent progress in the pharmacological modulation of targets downstream of p53 for effective cancer therapy.
Assuntos
Marcação de Genes , Genes p53/efeitos dos fármacos , Terapia Genética , Neoplasias/terapia , Animais , Desenho de Fármacos , HumanosRESUMO
A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23-ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.
RESUMO
UNLABELLED: TBK1 (TANK-binding kinase 1) is a noncanonical IκB protein kinase that phosphorylates and activates downstream targets such as IRF3 and c-Rel and, mediates NF-κB activation in cancer. Previous reports demonstrated synthetic lethality of TBK1 with mutant KRAS in non-small cell lung cancer (NSCLC); thus, TBK1 could be a novel target for treatment of KRAS-mutant NSCLC. Here, the effect of TBK1 on proliferation in a panel of cancer cells by both genetic and pharmacologic approaches was evaluated. In KRAS-mutant cancer cells, reduction of TBK1 activity by knockdown or treatment with TBK1 inhibitors did not correlate with reduced proliferation in a two-dimensional viability assay. Verification of target engagement via reduced phosphorylation of S386 of IRF3 (pIRF3(S386)) was difficult to assess in NSCLC cells due to low protein expression. However, several cell lines were identified with high pIRF3(S386) levels after screening a large panel of cell lines, many of which also harbor KRAS mutations. Specifically, a large subset of KRAS-mutant pancreatic cancer cell lines was uncovered with high constitutive pIRF3(S386) levels, which correlated with high levels of phosphorylated S172 of TBK1 (pTBK1(S172)). Finally, TBK1 inhibitors dose-dependently inhibited pIRF3(S386) in these cell lines, but this did not correlate with inhibition of cell growth. Taken together, these data demonstrate that the regulation of pathways important for cell proliferation in some NSCLC, pancreatic, and colorectal cell lines is not solely dependent on TBK1 activity. IMPLICATIONS: TBK1 has therapeutic potential under certain contexts and phosphorylation of its downstream target IRF3 is a biomarker of TBK1 activity.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Fator Regulador 3 de Interferon/antagonistas & inibidores , Neoplasias Pulmonares/terapia , Neoplasias/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de SinaisRESUMO
Structure-activity relationship (SAR) studies by modification of the unsaturated side chain of potent anticancer marine natural product psymberin/irciniastatin A (1) suggest that substitution at C4 and C5 is important for the cytotoxicity of psymberin, but the terminal double bond is not essential for activity. An aryl group is a good replacement for the olefin. The total synthesis of structurally simplified C11-deoxypsymberin (29) was completed, and its activity is consistently more potent than the natural product which provides a unique opportunity for further SAR studies in the psymberin and pederin family. Preliminary mechanism studies suggest the mode of action of psymberin is through cell apoptosis.