Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dev Growth Differ ; 57(1): 10-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25389084

RESUMO

Mouse models incorporating inducible Cre-ERT2/LoxP recombination coupled with sensitive fluorescent reporter lines are being increasingly used to track cell lineages in vivo. In this study we use two inducible reporter strains, Ai9iCol2a1 (Ai9×Col2a1-creERT2) to track contribution of chondrogenic progenitors during bone regeneration in a closed fracture model and Ai9i UBC (Ai9×UBC-creERT2) to examine methods for inducing localized recombination. By comparing with Ai9 littermate controls as well as inducible reporter mice not dosed with tamoxifen, we revealed significant leakiness of the CreERT2 system, particularly in the bone marrow of both lines. These studies highlight the challenges associated with highly sensitive reporters that may be activated without induction in tissues where the CreERT2 fusion is expressed. Examination of the growth plate in the Ai9iCol2a1 strain showed cells of the osteochondral lineage (cell co-staining with chondrocyte and osteoblast markers) labeled with the tdTom reporter. However, no such labeling was noted in healing fractures of Ai9iCol2a1 mice. Attempts to label a single limb using intramuscular injection of 4-hydroxytamoxifen in the Ai9i UBC strain resulted in complete labeling of the entire animal, comparable to intraperitoneal injection. While a challenge to interpret, these data are nonetheless informative regarding the limitations of these inducible reporter models, and justify caution and expansive controls in future studies using such models.


Assuntos
Rastreamento de Células/métodos , Condrócitos/metabolismo , Consolidação da Fratura/fisiologia , Fraturas Ósseas/metabolismo , Genes Reporter , Osteoblastos/metabolismo , Animais , Condrócitos/patologia , Feminino , Fraturas Ósseas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/patologia
2.
Cells ; 11(20)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291144

RESUMO

Intimal calcification and vascular stiffening are predominant features of end-stage atherosclerosis. However, their role in atherosclerotic plaque instability and how the extent and spatial distribution of calcification influence plaque biology remain unclear. We recently showed that extensive macro calcification can be a stabilizing feature of late-stage human lesions, associated with a reacquisition of more differentiated properties of plaque smooth muscle cells (SMCs) and extracellular matrix (ECM) remodeling. Here, we hypothesized that biomechanical forces related to macro-calcification within plaques influence SMC phenotype and contribute to plaque stabilization. We generated a finite element modeling (FEM) pipeline to assess plaque tissue stretch based on image analysis of preoperative computed tomography angiography (CTA) of carotid atherosclerotic plaques to visualize calcification and soft tissues (lipids and extracellular matrix) within the lesions. Biomechanical stretch was significantly reduced in tissues in close proximity to macro calcification, while increased levels were observed within distant soft tissues. Applying this data to an in vitro stretch model on primary vascular SMCs revealed upregulation of typical markers for differentiated SMCs and contractility under low stretch conditions but also impeded SMC alignment. In contrast, high stretch conditions in combination with calcifying conditions induced SMC apoptosis. Our findings suggest that the load bearing capacities of macro calcifications influence SMC differentiation and survival and contribute to atherosclerotic plaque stabilization.


Assuntos
Calcinose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Miócitos de Músculo Liso/patologia , Doenças das Artérias Carótidas/diagnóstico por imagem , Calcinose/patologia , Fenótipo , Lipídeos
3.
Diabetes ; 71(2): 285-297, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753800

RESUMO

Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Endotélio Vascular/fisiopatologia , Eritrócitos/metabolismo , MicroRNAs/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
4.
Clin Transl Med ; 12(2): e682, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184400

RESUMO

RATIONALE: Vascular calcification is a prominent feature of late-stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context. METHODS AND RESULTS: In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α-SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE-/- mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFß1, phosphate and ß-glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues. CONCLUSION: We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α-SMA+ regions of calcified cardiovascular tissues, induced by pro-inflammatory and pro-osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.


Assuntos
Proteínas da Matriz Extracelular/farmacologia , Músculo Liso/efeitos dos fármacos , Osteogênese/genética , Proteoglicanas/farmacologia , Calcificação Vascular/etiologia , Análise de Variância , Estudos de Coortes , Estudos Transversais , Proteínas da Matriz Extracelular/metabolismo , Humanos , Modelos Lineares , Músculo Liso/fisiologia , Países Baixos , Osteogênese/fisiologia , Estudos Prospectivos , Proteoglicanas/metabolismo , Estatísticas não Paramétricas , Suécia , Calcificação Vascular/genética
5.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063989

RESUMO

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Assuntos
Calcinose , Miócitos de Músculo Liso , Proteoglicanas/metabolismo , Remodelação Vascular , Animais , Diferenciação Celular , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Fatores de Transcrição SOX9/metabolismo , Proteína Smad3/metabolismo
6.
Cells ; 9(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168892

RESUMO

Aortic valve stenosis (AVS), a consequence of increased fibrosis and calcification of the aortic valve leaflets, causes progressive narrowing of the aortic valve. Proteoglycans, structural components of the aortic valve, accumulate in regions with fibrosis and moderate calcification. Particularly, proteoglycan 4 (PRG4) has been identified in fibrotic parts of aortic valves. However, the role of PRG4 in the context of AVS and aortic valve calcification has not yet been determined. Here, transcriptomics, histology, and immunohistochemistry were performed in human aortic valves from patients undergoing aortic valve replacement. Human valve interstitial cells (VICs) were used for calcification experiments and RNA expression analysis. PRG4 was significantly upregulated in thickened and calcified regions of aortic valves compared with healthy regions. In addition, mRNA levels of PRG4 positively associated with mRNA for proteins involved in cardiovascular calcification. Treatment of VICs with recombinant human PRG4 enhanced phosphate-induced calcification and increased the mRNA expression of bone morphogenetic protein 2 and the runt-related transcription factor 2. In summary, PRG4 was upregulated in the development of AVS and promoted VIC osteogenic differentiation and calcification. These results suggest that an altered valve leaflet proteoglycan composition may play a role in the progression of AVS.


Assuntos
Estenose da Valva Aórtica/sangue , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Calcinose/sangue , Constrição Patológica/fisiopatologia , Proteoglicanas/metabolismo , Idoso , Estenose da Valva Aórtica/fisiopatologia , Calcinose/fisiopatologia , Diferenciação Celular , Células Cultivadas , Humanos
7.
Cells ; 9(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325687

RESUMO

Proprotein convertases (PCSKs) process matrix metalloproteases and cytokines, but their function in the vasculature is largely unknown. Previously, we demonstrated upregulation of PCSK6 in atherosclerotic plaques from symptomatic patients, localization to smooth muscle cells (SMCs) in the fibrous cap and positive correlations with inflammation, extracellular matrix remodeling and cytokines. Here, we hypothesize that PCSK6 could be involved in flow-mediated vascular remodeling and aim to evaluate its role in the physiology of this process using knockout mice. Pcsk6-/- and wild type mice were randomized into control and increased blood flow groups and induced in the right common carotid artery (CCA) by ligation of the left CCA. The animals underwent repeated ultrasound biomicroscopy (UBM) examinations followed by euthanization with subsequent evaluation using wire myography, transmission electron microscopy or histology. The Pcsk6-/- mice displayed a flow-mediated increase in lumen circumference over time, assessed with UBM. Wire myography revealed differences in the flow-mediated remodeling response detected as an increase in lumen circumference at optimal stretch with concomitant reduction in active tension. Furthermore, a flow-mediated reduction in expression of SMC contractile markers SMA, MYH11 and LMOD1 was seen in the Pcsk6-/- media. Absence of PCSK6 increases outward remodeling and reduces medial contractility in response to increased blood flow.


Assuntos
Movimento Celular/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pró-Proteína Convertases/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Serina Endopeptidases/metabolismo
8.
JVS Vasc Sci ; 1: 13-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34617037

RESUMO

OBJECTIVE: Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. METHODS: Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. RESULTS: Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. CONCLUSIONS: We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal "roadmap" of vascular healing as a publicly available resource for the research community.

9.
Atherosclerosis ; 288: 175-185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31109707

RESUMO

BACKGROUND AND AIMS: Unstable carotid atherosclerosis causes stroke, but methods to identify patients and lesions at risk are lacking. We recently found enrichment of genes associated with calcification in carotid plaques from asymptomatic patients. Here, we hypothesized that calcification represents a stabilising feature of plaques and investigated how macro-calcification, as estimated by computed tomography (CT), correlates with gene expression profiles in lesions. METHODS: Plaque calcification was measured in pre-operative CT angiographies. Plaques were sorted into high- and low-calcified, profiled with microarrays, followed by bioinformatic analyses. Immunohistochemistry and qPCR were performed to evaluate the findings in plaques and arteries with medial calcification from chronic kidney disease patients. RESULTS: Smooth muscle cell (SMC) markers were upregulated in high-calcified plaques and calcified plaques from symptomatic patients, whereas macrophage markers were downregulated. The most enriched processes in high-calcified plaques were related to SMCs and extracellular matrix (ECM) organization, while inflammation, lipid transport and chemokine signaling were repressed. These findings were confirmed in arteries with high medial calcification. Proteoglycan 4 (PRG4) was identified as the most upregulated gene in association with plaque calcification and found in the ECM, SMA+ and CD68+/TRAP + cells. CONCLUSIONS: Macro-calcification in carotid lesions correlated with a transcriptional profile typical for stable plaques, with altered SMC phenotype and ECM composition and repressed inflammation. PRG4, previously not described in atherosclerosis, was enriched in the calcified ECM and localized to activated macrophages and smooth muscle-like cells. This study strengthens the notion that assessment of calcification may aid evaluation of plaque phenotype and stroke risk.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/genética , Angiografia por Tomografia Computadorizada , Perfilação da Expressão Gênica , Músculo Liso Vascular/diagnóstico por imagem , Placa Aterosclerótica , Transcriptoma , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/genética , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Estenose das Carótidas/complicações , Estenose das Carótidas/patologia , Humanos , Músculo Liso Vascular/patologia , Valor Preditivo dos Testes , Proteoglicanas/genética , Medição de Risco , Fatores de Risco , Ruptura Espontânea , Acidente Vascular Cerebral/etiologia , Suécia , Calcificação Vascular/complicações , Calcificação Vascular/patologia
10.
Cancer Res ; 76(12): 3644-54, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197200

RESUMO

RAF kinase inhibitor protein (RKIP) is a seminal regulator of intracellular signaling and exhibits both antimetastatic and antitumorigenic properties. Decreased expression of RKIP has been described in several human malignancies, including acute myelogenous leukemia (AML). As the mechanisms leading to RKIP loss in AML are still unclear, we aimed to analyze the potential involvement of miRNAs within this study. miRNA microarray and qPCR data of more than 400 AML patient specimens revealed correlation between decreased expression of RKIP and increased expression of miR-23a, a member of the miR-23a/27a/24-2 cluster. In functional experiments, overexpression of miR-23a decreased RKIP mRNA and protein expression, whereas miR-23a inhibition caused the opposite effect. By using an RKIP 3'-untranslated region luciferase reporter construct with and without mutation or deletion of the putative miR-23a-binding site, we could show that RKIP modulation by miR-23a is mediated via direct binding to this region. Importantly, miR-23a overexpression induced a significant increase of proliferation in hematopoietic cells. Simultaneous transfection of an RKIP expression construct lacking the miR-23a-binding sites reversed this phenotype, indicating that this effect is truly mediated via downregulation of RKIP. Finally, by analyzing more than 4,300 primary patient specimens via database retrieval from The Cancer Genome Atlas, we could highlight the importance of the miR-23a/RKIP axis in a broad range of human cancer entities. In conclusion, we have identified miR-23a as a negative regulator of RKIP expression in AML and have provided data that suggest the importance of our observation beyond this tumor entity. Cancer Res; 76(12); 3644-54. ©2016 AACR.


Assuntos
Leucemia Mieloide Aguda/patologia , MicroRNAs/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/genética , Proteína de Ligação a Fosfatidiletanolamina/análise , Proteína de Ligação a Fosfatidiletanolamina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA