Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 204(3): 607-615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238552

RESUMO

PURPOSE: The optimal time to initiation of adjuvant chemotherapy (TTAC) for triple negative breast cancer (TNBC) patients is unclear. This study evaluates the association between TTAC and survival in TNBC patients. METHODS: We conducted a retrospective study using data from a cohort of TNBC patients diagnosed between January 1, 2010 to December 31, 2018, registered in the Tumor Centre Regensburg was conducted. Data included demographics, pathology, treatment, recurrence and survival. TTAC was defined as days from primary surgery to first dose of adjuvant chemotherapy. The Kaplan-Meier method was used to evaluate impact of TTAC on overall survival (OS) and 5-year OS. RESULTS: A total of 245 TNBC patients treated with adjuvant chemotherapy and valid TTAC data were included. Median TTAC was 29 days. The group receiving systemic therapy within 22 to 28 days after surgery had the most favorable outcome, with median OS of 10.2 years. Groups receiving systemic therapy between 29-35 days, 36-42 days, and more than 6 weeks after surgery had significantly decreased median survival, with median OS of 8.3 years, 7.8 years, and 6.9 years, respectively. Patients receiving therapy between 22-28 days had significantly better survival compared to those receiving therapy between 29-35 days (p = 0.043), and patients receiving therapy after 22-28 days also demonstrated significantly better survival compared to those receiving therapy after more than 43 days (p = 0.033). CONCLUSION: Timing of adjuvant systemic therapy can influence OS in TNBC patients. Efforts should be made to avoid unnecessary delays in administering chemotherapy to ensure timely initiation of systemic therapy and optimize patient outcomes.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Estudos Retrospectivos , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/métodos , Terapia Combinada , Estadiamento de Neoplasias
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000582

RESUMO

The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.


Assuntos
Aminopiridinas , Benzimidazóis , Neoplasias da Mama , Proliferação de Células , Receptor ErbB-4 , Tamoxifeno , Animais , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Receptor ErbB-4/metabolismo , Receptor ErbB-4/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
3.
Front Immunol ; 15: 1355130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742103

RESUMO

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Terapia Neoadjuvante , Receptor ErbB-2 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Terapia Neoadjuvante/métodos , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Front Oncol ; 14: 1354377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699636

RESUMO

Introduction: The negative impact of unmanaged psychological distress on quality of life and outcome in breast cancer survivors has been demonstrated. Fortunately, studies indicate that distress can effectively be addressed and even prevented using evidence-based interventions. In Germany prescription-based mobile health apps, known as DiGAs (digital health applications), that are fully reimbursed by health insurances, were introduced in 2020. In this study, the effectiveness of an approved breast cancer DiGA was investigated: The personalized coaching app PINK! Coach supports and accompanies breast cancer patients during therapy and follow-up. Methods: PINK! Coach was specifically designed for breast cancer (BC) patients from the day of diagnosis to the time of Follow-up (aftercare). The app offers individualized, evidence-based therapy and side-effect management, mindfulness-based stress reduction, nutritional and psychological education, physical activity tracking, and motivational exercises to implement lifestyle changes sustainably in daily routine. A prospective, intraindividual RCT (DRKS00028699) was performed with n = 434 patients recruited in 7 German breast cancer centers from September 2022 until January 2023. Patients with BC were included independent of their stage of diseases, type of therapy and molecular characteristics of the tumor. Patients were randomized into one of two groups: The intervention group got access to PINK! over 12 weeks; the control group served as a waiting-list comparison to "standard of care." The primary endpoint was psychological distress objectified by means of Patient Health Questionnaire-9 (PHQ-9). Subgroups were defined to investigate the app's effect on several patient groups such as MBC vs. EBC patients, patients on therapy vs. in aftercare, patients who received a chemotherapy vs. patients who did not. Results: Efficacy analysis of the primary endpoint revealed a significant reduction in psychological distress (least squares estimate -1.62, 95% confidence interval [1.03; 2.21]; p<0.001) among intervention group patients from baseline to T3 vs, control group. Subgroup analysis also suggested improvements across all clinical situations. Conclusion: Patients with breast cancer suffer from psychological problems including anxiety and depression during and after therapy. Personalized, supportive care with the app PINK! Coach turned out as a promising opportunity to significantly improve psychological distress in a convenient, accessible, and low-threshold manner for breast cancer patients independent of their stage of disease (EBC/MBC), therapy phase (aftercare or therapy) or therapy itself (chemotherapy/other therapy options). The app is routinely available in Germany as a DiGA. Clinical Trial Registration: DRKS Trial Registry (DRKS00028699).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA