Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720343

RESUMO

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Infecções por Klebsiella , Klebsiella pneumoniae , Camundongos Endogâmicos C57BL , Animais , Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Camundongos , Infecções por Klebsiella/patologia , Infecções por Klebsiella/microbiologia , Feminino , Masculino , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar
2.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195485

RESUMO

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Toxoplasmose , Humanos , Animais , Gatos , Feminino , Masculino , Camundongos , Doenças Neuroinflamatórias , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Toxoplasmose/complicações , Encéfalo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38825349

RESUMO

BACKGROUND: Biomarkers of neuronal, glial cells and inflammation in traumatic brain injury (TBI) are available but they do not specifically reflect the damage to synapses, which represent the bulk volume of the brain. Experimental models have demonstrated extensive involvement of synapses in acute TBI, but biomarkers of synaptic damage in human patients have not been explored. METHODS: Single-molecule array assays were used to measure synaptosomal-associated protein-25 (SNAP-25) and visinin-like protein 1 (VILIP-1) (along with neurofilament light chain (NFL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillar acidic protein (GFAP), interleukin-6 (IL-6) and interleukin-8 (IL-8)) in ventricular cerebrospinal fluid (CSF) samples longitudinally acquired during the intensive care unit (ICU) stay of 42 patients with severe TBI or 22 uninjured controls. RESULTS: CSF levels of SNAP-25 and VILIP-1 are strongly elevated early after severe TBI and decline in the first few days. SNAP-25 and VILIP-1 correlate with inflammatory markers at two distinct timepoints (around D1 and then again at D5) in follow-up. SNAP-25 and VILIP-1 on the day-of-injury have better sensitivity and specificity for unfavourable outcome at 6 months than NFL, UCH-L1 or GFAP. Later elevation of SNAP-25 was associated with poorer outcome. CONCLUSION: Synaptic damage markers are acutely elevated in severe TBI and predict long-term outcomes, as well as, or better than, markers of neuroaxonal injury. Synaptic damage correlates with initial injury and with a later phase of secondary inflammatory injury.

4.
J Neuroinflammation ; 19(1): 291, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482407

RESUMO

The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8-16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12-all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas , Proteômica , Humanos , Masculino , Feminino
5.
Brain Behav Immun ; 100: 29-47, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808288

RESUMO

Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Cognitivos , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Transtornos Cognitivos/complicações , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Convulsões/etiologia , Memória Espacial
6.
Epilepsia ; 63(11): 2802-2812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35996866

RESUMO

Posttraumatic epilepsy (PTE) is a well-known chronic complication following traumatic brain injury (TBI). Despite some evidence that age at the time of injury may influence the likelihood of PTE, the incidence of PTE in pediatric populations remains unclear. We therefore conducted a systematic review to determine the overall reported incidence of PTE, and explore potential risk factors associated with PTE after pediatric TBI. A comprehensive literature search of the PubMed, Embase, and Web of Science databases was conducted, including randomized controlled trials and cohort studies assessing the incidence of PTE in TBI pediatric patients. We excluded studies with a sample size of <10 patients and those in which a pediatric cohort was not clearly discernable. The review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We found that the overall incidence of PTE following pediatric TBI was 10% (95% confidence interval [CI] = 5.9%-15%). Subgroup analysis of a small number of studies demonstrated that the occurrence of early seizures (cumulative incidence ratio [CIR] = 7.28, 95% CI = 1.09-48.4, p = .040), severe TBI (CIR = 1.81, 95% CI = 1.23-2.67, p < .001), and intracranial hemorrhage (CIR = 1.60, 95% CI = 1.06-2.40, p = .024) increased the risk of PTE in this population. Other factors, including male sex and neurosurgical intervention, were nonsignificantly associated with a higher incidence of PTE. In conclusion, PTE is a significant chronic complication following childhood TBI, similar to in the adult population. Further standardized investigation into clinical risk factors and management guidelines is warranted. PROSPERO ID# CRD42021245802.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Adulto , Humanos , Criança , Masculino , Incidência , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Fatores de Risco , Estudos de Coortes
7.
J Neuroinflammation ; 18(1): 276, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838047

RESUMO

Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
8.
J Neuroinflammation ; 18(1): 72, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731173

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a major cause of disability in young children, yet the factors contributing to poor outcomes in this population are not well understood. TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization, and such infections may modify TBI pathobiology and recovery. In this study, we hypothesized that a peripheral immune challenge such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen outcomes after experimental pediatric TBI, by perpetuating the inflammatory immune response. METHODS: Three-week-old male mice received either a moderate controlled cortical impact or sham surgery, followed by a single LPS dose (1 mg/kg i.p.) or vehicle (0.9% saline) at 4 days post-surgery, then analysis at 5 or 8 days post-injury (i.e., 1 or 4 days post-LPS). RESULTS: LPS-treated mice exhibited a time-dependent reduction in general activity and social investigation, and increased anxiety, alongside substantial body weight loss, indicating transient sickness behaviors. Spleen-to-body weight ratios were also increased in LPS-treated mice, indicative of persistent activation of adaptive immunity at 4 days post-LPS. TBI + LPS mice showed an impaired trajectory of weight gain post-LPS, reflecting a synergistic effect of TBI and the LPS-induced immune challenge. Flow cytometry analysis demonstrated innate immune cell activation in blood, brain, and spleen post-LPS; however, this was not potentiated by TBI. Cytokine protein levels in serum, and gene expression levels in the brain, were altered in response to LPS but not TBI across the time course. Immunofluorescence analysis of brain sections revealed increased glia reactivity due to injury, but no additive effect of LPS was observed. CONCLUSIONS: Together, we found that a transient, infection-like systemic challenge had widespread effects on the brain and immune system, but these were not synergistic with prior TBI in pediatric mice. These findings provide novel insight into the potential influence of a secondary immune challenge to the injured pediatric brain, with future studies needed to elucidate the chronic effects of this two-hit insult.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Infecção Hospitalar/imunologia , Encefalite/imunologia , Encefalite/patologia , Imunidade Adaptativa/imunologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Comportamento Animal , Lesões Encefálicas Traumáticas/psicologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalite/psicologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Comportamento Social , Redução de Peso
9.
J Neuroinflammation ; 17(1): 222, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711529

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world's population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.


Assuntos
Lesões Encefálicas Traumáticas/microbiologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Toxoplasmose/complicações , Toxoplasmose/patologia , Animais , Encéfalo/microbiologia , Encéfalo/patologia , Gatos , Humanos , Inflamação , Toxoplasma
10.
J Neurochem ; 151(5): 542-557, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30644560

RESUMO

Epilepsy is a serious neurological condition exhibiting complex pathology and deserving of more serious attention. More than 30% of people with epilepsy are not responsive to more than 20 anti-epileptic drugs currently available, reflecting an unmet clinical need for novel therapeutic strategies. Not much is known about the pathogenesis of epilepsy, but evidence indicates that neuroinflammation might contribute to the onset and progression of epilepsy following acquired brain insults. However, the molecular mechanisms underlying these pathophysiological processes are yet to be fully understood. The emerging research suggests that high-mobility group box protein 1 (HMGB1), a DNA-binding protein that is both actively secreted by inflammatory cells and released by necrotic cells, might contribute to the pathogenesis of epilepsy. HMGB1 as an initiator and amplifier of neuroinflammation, and its activation is implicated in the propagation of seizures in animal models. The current review will highlight the potential role of HMGB1 in the pathogenesis of epilepsy, and implications of HMGB1-targeted therapies against epilepsy. HMGB1 in this context is an emerging concept deserving further exploration. Increased understanding of HMGB1 in seizures and epilepsy will pave the way in designing novel and innovative therapeutic strategies that could modify the disease course or prevent its development.


Assuntos
Epilepsia/metabolismo , Proteína HMGB1/metabolismo , Animais , Humanos
11.
Neurobiol Dis ; 123: 27-41, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30059725

RESUMO

Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.


Assuntos
Afeto , Lesões Encefálicas Traumáticas/psicologia , Epilepsia Pós-Traumática/psicologia , Transtornos Mentais/psicologia , Transtornos Neurocognitivos/psicologia , Animais , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/complicações , Humanos , Transtornos Mentais/etiologia , Transtornos Neurocognitivos/etiologia , Fatores de Risco , Comportamento Social
12.
Neurobiol Dis ; 123: 8-19, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30121231

RESUMO

Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Epilepsia Pós-Traumática/fisiopatologia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Humanos , Camundongos , Ratos , Fatores de Risco , Pesquisa Translacional Biomédica
13.
Neurobiol Dis ; 123: 86-99, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936231

RESUMO

Post-traumatic epilepsy (PTE) is diagnosed in 20% of individuals with acquired epilepsy, and can impact significantly the quality of life due to the seizures and other functional or cognitive and behavioral outcomes of the traumatic brain injury (TBI) and PTE. There is no available antiepileptogenic or disease modifying treatment for PTE. Animal models of TBI and PTE have been developed, offering useful insights on the value of inflammatory, neurodegenerative pathways, hemorrhages and iron accumulation, calcium channels and other target pathways that could be used for treatment development. Most of the existing preclinical studies test efficacy towards pathologies of functional recovery after TBI, while a few studies are emerging testing the effects towards induced or spontaneous seizures. Here we review the existing preclinical trials testing new candidate treatments for TBI sequelae and PTE, and discuss future directions for efforts aiming at developing antiepileptogenic and disease-modifying treatments.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Epilepsia Pós-Traumática/terapia , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/metabolismo , Humanos , Transdução de Sinais
14.
Acta Neuropathol ; 137(5): 731-755, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30535946

RESUMO

This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Inflamação/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Humanos , Inflamação/epidemiologia , Inflamação/terapia , Neuroimunomodulação
15.
Brain Behav Immun ; 79: 63-74, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029794

RESUMO

Traumatic brain injury (TBI) is a serious global health issue, being the leading cause of death and disability for individuals under the age of 45, and one of the largest causes of global neurological disability. In addition to the brain injury itself, it is increasingly appreciated that a TBI may also alter the systemic immune response in a way that renders TBI patients more vulnerable to infections in the acute post-injury period. Such infections pose an additional challenge to the patient, increasing rates of mortality and morbidity, and worsening neurological outcomes. Hospitalization, surgical interventions, and a state of immunosuppression induced by injury to the central nervous system (CNS), may all contribute to the high rate of infections seen in the population with TBI. Ongoing research to better understand the immunomodulators that underlie TBI-induced immunosuppression may aid in the development of effective therapeutic strategies to improve the recovery trajectory for patients. This review first describes the clinical scenario, posing the question of whether TBI patients are more susceptible to infections such as pneumonia, and if so, why? We then consider how cross-talk between the injured brain and the systemic immune system occurs, and further, how the additional immune challenge of an acquired infection can contribute to ongoing neuroinflammation and neurodegeneration after a TBI. Experimental models combining TBI with infection are discussed, as well as current treatment options available for this double-barreled insult. The aims of this review are to summarize current understanding of the bidirectional relationship between the CNS and the immune system when faced with a mechanical trauma combined with a concomitant infection, and to highlight key outstanding questions that remain in the field.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Neuroimunomodulação/fisiologia , Animais , Encéfalo/imunologia , Lesões Encefálicas/imunologia , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Humanos , Imunidade/fisiologia , Infecções/imunologia , Inflamação/fisiopatologia , Neuroimunomodulação/imunologia
16.
Brain Behav Immun ; 80: 536-550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039431

RESUMO

Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10 weeks old) compared to middle-aged (i.e., 1 year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24 h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Neuroimunomodulação/imunologia , Recuperação de Função Fisiológica/imunologia , Fatores Etários , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/complicações , Modelos Animais de Doenças , Masculino , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Homeostase do Telômero/imunologia , Resultado do Tratamento
17.
Epilepsia ; 60(10): 2023-2036, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468516

RESUMO

Epidemiological data and gene association studies suggest a genetic predisposition to developing epilepsy after an acquired brain insult, such as traumatic brain injury. An improved understanding of genetic determinants of vulnerability is imperative for early disease diagnosis and prognosis prediction, with flow-on benefits for the development of targeted antiepileptogenic treatments as well as optimal clinical trial design. In the laboratory, one approach to investigate why some individuals are more vulnerable to acquired epilepsy than others is to examine unique rodent models exhibiting either vulnerability or resistance to epileptogenesis. This review focuses on the most well-characterized of these models, the FAST (seizure-prone) and SLOW (seizure-resistant) rat strains, which were derived by selective breeding for differential amygdala electrical kindling rates. We describe how these strains differ in their seizure profiles, neuroanatomy, and neurobehavioral phenotypes, both at baseline and after a brain insult, with this knowledge proving fruitful to identify common pathological abnormalities associated with seizure susceptibility and psychiatric comorbidities. It is important to note that accruing data on strain differences in multiple biological processes provides insight into why some individuals may be more vulnerable to epileptogenesis, although future studies are evidently needed to identify the precise molecular and genetic risk factors. Together, the FAST and SLOW rat strains, and other similar experimental models, are invaluable neurobiological tools to investigate the effect of genetic background on acquired epilepsy risk, as well as the poorly understood relationship between epilepsy development and associated comorbidities.


Assuntos
Modelos Animais de Doenças , Epilepsia/genética , Predisposição Genética para Doença , Convulsões/genética , Tonsila do Cerebelo/fisiopatologia , Animais , Epilepsia/fisiopatologia , Excitação Neurológica/genética , Fenótipo , Ratos , Convulsões/fisiopatologia
18.
J Neurosci ; 37(33): 7864-7877, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28724747

RESUMO

Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1ß and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility.SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments. In this preclinical study, we first demonstrate that a mouse model of traumatic injury to the pediatric brain reproduces many neuropathological and seizure-like hallmarks characteristic of epilepsy. Second, we demonstrate that targeting the acute inflammatory response reduces cognitive impairments, the degree of neuropathology, and seizure susceptibility, after pediatric brain injury in mice. These findings provide evidence that inflammatory cytokine signaling is a key process underlying epilepsy development after an acquired brain insult, which represents a feasible therapeutic target to improve quality of life for survivors.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Suscetibilidade a Doenças/fisiopatologia , Receptores de Interleucina-1/antagonistas & inibidores , Convulsões/fisiopatologia , Fatores Etários , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Suscetibilidade a Doenças/diagnóstico por imagem , Humanos , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem/tendências , Proteínas Recombinantes/administração & dosagem , Convulsões/diagnóstico por imagem , Convulsões/tratamento farmacológico
19.
J Neuroinflammation ; 14(1): 10, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086980

RESUMO

BACKGROUND: Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. BODY: We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1ß interacting with its receptors, and transforming growth factor-ß signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. CONCLUSION: Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Epilepsia/imunologia , Epilepsia/metabolismo , Animais , Lesões Encefálicas Traumáticas/epidemiologia , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Epilepsia/epidemiologia , Humanos , Inflamação/epidemiologia , Inflamação/imunologia , Inflamação/metabolismo , Convulsões/epidemiologia , Convulsões/imunologia , Convulsões/metabolismo , Transdução de Sinais/fisiologia
20.
Brain Behav Immun ; 66: 359-371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28782716

RESUMO

Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.


Assuntos
Anti-Inflamatórios/administração & dosagem , Lesões Encefálicas Traumáticas/complicações , Encefalite/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Traumatismo Múltiplo/complicações , Fraturas da Tíbia/complicações , Animais , Atrofia/complicações , Comportamento Animal , Edema Encefálico/complicações , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Encefalite/etiologia , Encefalite/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA