Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(22): 225001, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877942

RESUMO

We report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously. Moreover, we observed an energy-angle correlation of the streaked betatron x rays and utilized it in diagnosing the electron acceleration process in a single-shot mode. Our work could also find applications in advanced control of laser beam and particle propagation. More importantly, the angular streaked betatron x ray has an intrinsic spatiotemporal correlation, which makes it a promising tool for single-shot pump-probe applications.

2.
Phys Rev Lett ; 129(13): 135001, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206410

RESUMO

Short-pulse, laser-solid interactions provide a unique platform for studying complex high-energy-density matter. We present the first demonstration of solid-density, micron-scale keV plasmas uniformly heated by a high-contrast, 400 nm wavelength laser at intensities up to 2×10^{21} W/cm^{2}. High-resolution spectral analysis of x-ray emission reveals uniform heating up to 3.0 keV over 1 µm depths. Particle-in-cell simulations indicate the production of a uniformly heated keV plasma to depths of 2 µm. The significant bulk heating and presence of highly ionized ions deep within the target are attributed to the few MeV hot electrons that become trapped and undergo refluxing within the target sheath fields. These conditions enabled the differentiation of atomic physics models of ionization potential depression in high-energy-density environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA