Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5551, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956067

RESUMO

Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.


Assuntos
Dopamina , Optogenética , Dopamina/metabolismo , Animais , Humanos , Optogenética/métodos , Camundongos , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/genética , Camundongos Endogâmicos C57BL , Regulação Alostérica , Fotometria/métodos , Células HEK293
2.
Nat Commun ; 14(1): 7016, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919287

RESUMO

Neurons in the medial prefrontal cortex (mPFC) are functionally linked to working memory (WM) but how distinct projection pathways contribute to WM remains unclear. Based on optical recordings, optogenetic perturbations, and pharmacological interventions in male mice, we report here that dorsomedial striatum (dmStr)-projecting mPFC neurons are essential for WM maintenance, but not encoding or retrieval, in a T-maze spatial memory task. Fiber photometry of GCaMP6m-labeled mPFC→dmStr neurons revealed strongest activity during the maintenance period, and optogenetic inhibition of these neurons impaired performance only when applied during this period. Conversely, enhancing mPFC→dmStr pathway activity-via pharmacological suppression of HCN1 or by optogenetic activation during the maintenance period-alleviated WM impairment induced by NMDA receptor blockade. Moreover, cellular-resolution miniscope imaging revealed that >50% of mPFC→dmStr neurons are active during WM maintenance and that this subpopulation is distinct from neurons active during encoding and retrieval. In all task periods, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Masculino , Camundongos , Animais , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Transtornos da Memória/metabolismo , Corpo Estriado/metabolismo , Neurônios/metabolismo
3.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032214

RESUMO

The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.


Assuntos
Conectoma , Condutos Olfatórios/fisiologia , Animais , Conjuntos de Dados como Assunto , Drosophila melanogaster/fisiologia , Feminino , Interneurônios/fisiologia
4.
Curr Biol ; 30(16): 3183-3199.e6, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619485

RESUMO

Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.


Assuntos
Conectoma , Drosophila melanogaster/fisiologia , Interneurônios/metabolismo , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Condutos Olfatórios , Sinapses/fisiologia , Animais , Feminino , Interneurônios/citologia , Corpos Pedunculados/citologia , Neurônios/citologia , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA