Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 561-565, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33503447

RESUMO

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Assuntos
Pesquisa Biomédica/economia , Negro ou Afro-Americano , Administração Financeira , Pesquisadores/economia , Humanos , National Institutes of Health (U.S.)/economia , Grupos Raciais , Estados Unidos
2.
J Biomech Eng ; 145(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629011

RESUMO

Let me begin by sharing my deepest appreciation to the ASME for honoring me with the HR Lissner Medal and to the Journal of Biomechanical Engineering for this opportunity to share my personal path through biomechanics. ASME has been an academic home for me since my days as a doctoral student where my PhD advisors, Van C. Mow and W. Michael Lai, first supported my presenting on original research in the poster sessions and student competition of the Winter Annual Meetings. ASME meetings were where I met so many career advisors including Bob Nerem, Shu Chien, Savio Woo, Sheldon Weinbaum, Mort Friedman, Steve Goldstein, and Larry Taber who shared insights and tips to support me in navigating the bio-engineering discipline. Each of these mentors and advisors previously received the HR Lissner Medal and to be added to this community brings me the greatest sense of belonging. As I hope to convey here and as I did in my 2022 talk, I very much share this honor with numerous talented trainees that have led and motivated much of the directions in my own research program. For more than 30 years, I benefited from this collective of individuals who provided energy, innovation, talent and shared wisdom that brings me to where I stand now and is a testament to the importance of mentoring in the community of Lissner Medalists and ASME.


Assuntos
Distinções e Prêmios , Tutoria , Humanos , Fenômenos Biomecânicos , Mentores
3.
Biophys J ; 121(4): 575-581, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032457

RESUMO

The synovium is a multilayer connective tissue separating the intra-articular spaces of the diarthrodial joint from the extra-synovial vascular and lymphatic supply. Synovium regulates drug transport into and out of the joint, yet its material properties remain poorly characterized. Here, we measured the compressive properties (aggregate modulus, Young's modulus, and Poisson's ratio) and hydraulic permeability of synovium with a combined experimental-computational approach. A compressive aggregate modulus and Young's modulus for the solid phase of synovium were quantified from linear regression of the equilibrium confined and unconfined compressive stress upon strain, respectively (HA = 4.3 ± 2.0 kPa, Es = 2.1 ± 0.75, porcine; HA = 3.1 ± 2.0 kPa, Es = 2.8 ± 1.7, human). Poisson's ratio was estimated to be 0.39 and 0.40 for porcine and human tissue, respectively, from moduli values in a Monte Carlo simulation. To calculate hydraulic permeability, a biphasic finite element model's predictions were numerically matched to experimental data for the time-varying ramp and hold phase of a single increment of applied strain (k = 7.4 ± 4.1 × 10-15 m4/N.s, porcine; k = 7.4 ± 4.3 × 10-15 m4/N.s, human). We can use these newly measured properties to predict fluid flow gradients across the tissue in response to previously reported intra-articular pressures. These values for material constants are to our knowledge the first available measurements in synovium that are necessary to better understand drug transport in both healthy and pathological joints.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/fisiologia , Força Compressiva/fisiologia , Elasticidade , Humanos , Modelos Biológicos , Permeabilidade , Estresse Mecânico , Suínos , Membrana Sinovial
4.
FASEB J ; 33(12): 14022-14035, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638828

RESUMO

Cells of the adult nucleus pulposus (NP) are critically important in maintaining overall disc health and function. NP cells reside in a soft, gelatinous matrix that dehydrates and becomes increasingly fibrotic with age. Such changes result in physical cues of matrix stiffness that may be potent regulators of NP cell phenotype and may contribute to a transition toward a senescent and fibroblastic NP cell with a limited capacity for repair. Here, we investigate the mechanosignaling cues generated from changes in matrix stiffness in directing NP cell phenotype and identify mechanisms that can potentially preserve a biosynthetically active, juvenile NP cell phenotype. Using a laminin-functionalized polyethylene glycol hydrogel, we show that when NP cells form rounded, multicell clusters, they are able to maintain cytosolic localization of myocardin-related transcription factor (MRTF)-A, a coactivator of serum-response factor (SRF), known to promote fibroblast-like behaviors in many cells. Upon preservation of a rounded shape, human NP cells similarly showed cytosolic retention of transcriptional coactivator Yes-associated protein (YAP) and its paralogue PDZ-binding motif (TAZ) with associated decline in activation of its transcription factor TEA domain family member-binding domain (TEAD). When changes in cell shape occur, leading to a more spread, fibrotic morphology associated with stronger F-actin alignment, SRF and TEAD are up-regulated. However, targeted deletion of either cofactor was not sufficient to overcome shape-mediated changes observed in transcriptional activation of SRF or TEAD. Findings show that substrate stiffness-induced promotion of F-actin alignment occurs concomitantly with a flattened, spread morphology, decreased NP marker expression, and reduced biosynthetic activity. This work indicates cell shape is a stronger indicator of SRF and TEAD mechanosignaling pathways than coactivators MRTF-A and YAP/TAZ, respectively, and may play a role in the degeneration-associated loss of NP cellularity and phenotype.-Fearing, B. V., Jing, L., Barcellona, M. N., Witte, S. E., Buchowski, J. M., Zebala, L. P., Kelly, M. P., Luhmann, S., Gupta, M. C., Pathak, A., Setton, L. A. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Envelhecimento , Fenômenos Biomecânicos , Células Cultivadas , Citoesqueleto , Regulação da Expressão Gênica , Humanos , Hidrogéis , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Interferência de RNA , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536113

RESUMO

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Assuntos
Análise de Elementos Finitos , Membrana Sinovial , Animais , Transporte Biológico , Cartilagem Articular , Difusão , Modelos Biológicos , Suínos
6.
J Biomech Eng ; 136(2): 021010, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390195

RESUMO

Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders.


Assuntos
Matriz Extracelular/fisiologia , Colágenos Fibrilares/fisiologia , Fibrocartilagem/fisiologia , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Animais , Diferenciação Celular/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Estresse Mecânico
7.
Artigo em Inglês | MEDLINE | ID: mdl-38415197

RESUMO

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

8.
Arch Appl Mech ; 92(2): 447-459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35386426

RESUMO

Transport of solute across the arterial wall is a process driven by both convection and diffusion. In disease, the elastic fibers in the arterial wall are disrupted and lead to altered fluid and mass transport kinetics. A computational mixture model was used to numerically match previously published data of fluid and solute permeation experiments in groups of mouse arteries with genetic (knockout of fibulin-5) or chemical (treatment with elastase) disruption of elastic fibers. A biphasic model of fluid permeation indicated the governing property to be the hydraulic permeability, which was estimated to be 1.52×10-9, 1.01×10-8, and 1.07×10-8 mm4/µN.s for control, knockout, and elastase groups, respectively. A multiphasic model incorporating solute transport was used to estimate effective diffusivities that were dependent on molecular weight, consistent with expected transport behaviors in multiphasic biological tissues. The effective diffusivity for the 4 kDA FITC-dextran solute, but not the 70 or 150 kDa FITC-dextran solutes, was dependent on elastic fiber structure, with increasing values from control to knockout to elastase groups, suggesting that elastic fiber disruption affects transport of lower molecular weight solutes. The model used here sets the groundwork for future work investigating transport through the arterial wall.

9.
Appl Sci (Basel) ; 12(16)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451894

RESUMO

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.

10.
Arthritis Rheum ; 62(7): 1974-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20222111

RESUMO

OBJECTIVE: Prior reports document macrophage and lymphocyte infiltration with proinflammatory cytokine expression in pathologic intervertebral disc (IVD) tissues. Nevertheless, the role of the Th17 lymphocyte lineage in mediating disc disease remains uninvestigated. We undertook this study to evaluate the immunophenotype of pathologic IVD specimens, including interleukin-17 (IL-17) expression, from surgically obtained IVD tissue and from nondegenerated autopsy control tissue. METHODS: Surgical IVD tissues were procured from patients with degenerative disc disease (n = 25) or herniated IVDs (n = 12); nondegenerated autopsy control tissue was also obtained (n = 8) from the anulus fibrosus and nucleus pulposus regions. Immunohistochemistry was performed for cell surface antigens (CD68 for macrophages, CD4 for lymphocytes) and various cytokines, with differences in cellularity and target immunoreactivity scores analyzed between surgical tissue groups and between autopsy control tissue regions. RESULTS: Immunoreactivity for IL-4, IL-6, IL-12, and interferon-gamma (IFNgamma) was modest in surgical IVD tissue, although expression was higher in herniated IVD samples and virtually nonexistent in control samples. The Th17 lymphocyte product IL-17 was present in >70% of surgical tissue fields, and among control samples was detected rarely in anulus fibrosus regions and modestly in nucleus pulposus regions. Macrophages were prevalent in surgical tissues, particularly herniated IVD samples, and lymphocytes were expectedly scarce. Control tissue revealed lesser infiltration by macrophages and a near absence of lymphocytes. CONCLUSION: Greater IFNgamma positivity, macrophage presence, and cellularity in herniated IVDs suggests a pattern of Th1 lymphocyte activation in this pathology. Remarkable pathologic IVD tissue expression of IL-17 is a novel finding that contrasts markedly with low levels of IL-17 in autopsy control tissue. These findings suggest involvement of Th17 lymphocytes in the pathomechanism of disc degeneration.


Assuntos
Interleucina-17/metabolismo , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/patologia , Linfócitos T Auxiliares-Indutores/patologia , Adulto , Fatores Etários , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Degeneração do Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/imunologia , Deslocamento do Disco Intervertebral/metabolismo , Ativação Linfocitária , Subpopulações de Linfócitos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
11.
Ann Biomed Eng ; 49(4): 1245-1256, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33495977

RESUMO

Intra-articular drug delivery can be effective in targeting a diseased joint but is hampered by rapid clearance times from the diarthrodial joint. The synovium is a multi-layered tissue that surrounds the diarthrodial joint and governs molecular transport into and out of the joint. No models of drug clearance through synovium exist to quantify diffusivity across solutes, tissue type and disease pathology. We previously have developed a finite element model of synovium as a porous, permeable, fluid-filled tissue and used an inverse method to determine urea's effective diffusivity (Deff) in de-vitalized synovium explants.22 Here we apply this method to determine Deff from unsteady diffusive transport of model solutes and confirm the role of molecular weight in solute transport. As molecular weight increased, Deff decreased in both human and porcine tissues, with similar behavior across the two species. Unsteady transport was well-described by a single exponential transient decay in concentration, yielding solute half-lives (t1/2) that compared favorably with the Deff determined from the finite element model fit. Determined values for Deff parallel prior observations of size-dependent in vivo drug clearance and provide an intrinsic parameter with greater ability to resolve size-dependence in vitro. Thus, this work forms the basis for understanding the influence of size on drug transport in synovium and can guide future studies to elucidate the role of charge and tissue pathology on the transport of therapeutics in healthy and pathological human synovium.


Assuntos
Modelos Biológicos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Membrana Sinovial/metabolismo , Animais , Difusão , Humanos , Articulação do Joelho/metabolismo , Peso Molecular , Suínos
12.
Acta Biomater ; 131: 117-127, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229105

RESUMO

Degeneration of the intervertebral disc (IVD) is associated with significant biochemical and morphological changes that include a loss of disc height, decreased water content and decreased cellularity. Cell delivery has been widely explored as a strategy to supplement the nucleus pulposus (NP) region of the degenerated IVD in both pre-clinical and clinical trials, using progenitor or primary cell sources. We previously demonstrated an ability for a polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP cells to undergo a shift from a degenerative fibroblast-like state to a juvenile-like NP phenotype. In the current study, we evaluate the ability for this peptide-functionalized hydrogel to serve as a bioactive system for cell delivery, retention and preservation of a biosynthetic phenotype for primary IVD cells delivered to the rat caudal disc in an anular puncture degeneration model. Our data suggest that encapsulation of adult degenerative human NP cells in a stiff formulation of the hydrogel functionalized with laminin-mimetic peptides IKVAV and AG73 can promote cell viability and increased biosynthetic activity for this population in 3D culture in vitro. Delivery of the peptide-functionalized biomaterial with primary rat cells to the degenerated IVD supported NP cell retention and NP-specific protein expression in vivo, and promoted improved disc height index (DHI) values and endplate organization compared to untreated degenerated controls. The results of this study suggest the physical cues of this peptide-functionalized hydrogel can serve as a supportive carrier for cell delivery to the IVD. STATEMENT OF SIGNIFICANCE: Cell delivery into the degenerative intervertebral disc has been widely explored as a strategy to supplement the nucleus pulposus. The current work seeks to employ a biomaterial functionalized with laminin-mimetic peptides as a cell delivery scaffold in order to improve cell retention rates within the intradiscal space, while providing the delivered cells with biomimetic cues in order to promote phenotypic expression and increase biosynthetic activity. The use of the in situ crosslinkable material integrated with the native IVD, presenting a system with adequate physical properties to support a degenerative disc.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Hidrogéis/farmacologia , Degeneração do Disco Intervertebral/terapia , Peptídeos/farmacologia , Polímeros , Ratos
13.
Acta Biomater ; 133: 74-86, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823324

RESUMO

Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/terapia , Materiais Biocompatíveis , Humanos , Imunomodulação , Imunoterapia , Osteoartrite/terapia
14.
Ann Biomed Eng ; 49(3): 1110-1118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33479787

RESUMO

Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.


Assuntos
Gânglios Espinais/fisiologia , Neurônios/fisiologia , Animais , Cálcio/fisiologia , Estimulação Elétrica , Camundongos Transgênicos , Microscopia Confocal , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia
15.
J Tissue Eng ; 12: 20417314211021220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188794

RESUMO

The nucleus pulposus (NP) of the intervertebral disc plays a critical role in distributing mechanical loads to the axial skeleton. Alterations in NP cells and, consequently, NP matrix are some of the earliest changes in the development of disc degeneration. Previous studies demonstrated a role for laminin-presenting biomaterials in promoting a healthy phenotype for human NP cells from degenerated tissue. Here we investigate the use of laminin-mimetic peptides presented individually or in combination on a poly(ethylene) glycol hydrogel as a platform to modulate the behaviors of degenerative human NP cells. Data confirm that NP cells attach to select laminin-mimetic peptides that results in cell signaling downstream of integrin and syndecan binding. Furthermore, the peptide-functionalized hydrogels demonstrate an ability to promote cell behaviors that mimic that of full-length laminins. These results identify a set of peptides that can be used to regulate NP cell behaviors toward a regenerative engineering strategy.

16.
Biomaterials ; 277: 121113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492582

RESUMO

Biomaterial based strategies have been widely explored to preserve and restore the juvenile phenotype of cells of the nucleus pulposus (NP) in degenerated intervertebral discs (IVD). With aging and maturation, NP cells lose their ability to produce necessary extracellular matrix and proteoglycans, accelerating disc degeneration. Previous studies have shown that integrin or syndecan binding peptide motifs from laminin can induce NP cells from degenerative human discs to re-express juvenile NP-specific cell phenotype and biosynthetic activity. Here, we engineered alginate hydrogels to present integrin- and syndecan-binding peptides alone or in combination (cyclic RGD and AG73, respectively) to introduce bioactive features into the alginate gels. We demonstrated human NP cells cultured upon and within alginate hydrogels presented with cRGD and AG73 peptides exhibited higher cell viability, biosynthetic activity, and NP-specific protein expression over alginate alone. Moreover, the combination of the two peptide motifs elicited markers of the NP-specific cell phenotype, including N-Cadherin, despite differences in cell morphology and multicellular cluster formation between 2D and 3D cultures. These results represent a promising step toward understanding how distinct adhesive peptides can be combined to guide NP cell fate. In the future, these insights may be useful to rationally design hydrogels for NP cell-transplantation based therapies for IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Alginatos , Humanos , Hidrogéis , Integrinas , Peptídeos , Fenótipo , Sindecanas
17.
Biomaterials ; 250: 120057, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32361392

RESUMO

Cells of the nucleus pulposus have been observed to undergo a shift from their notochordal-like juvenile phenotype to a more fibroblast-like state with age and maturation. It has been demonstrated that culture of degenerative adult human nucleus pulposus cells upon soft (<1 kPa) full length laminin-containing hydrogel substrates promotes increased levels of a panel of markers associated with the juvenile nucleus pulposus cell phenotype. In the current work, we observed an ability to use soft polymeric substrates functionalized with short laminin-mimetic peptide sequences to recapitulate the behaviors elicited by soft, full-length laminin containing materials. Furthermore, our work suggests an ability to mimic features of soft systems through control of peptide density upon stiffer substrates. Specifically, results suggest that stiffer polymer-peptide hydrogel substrates can be used to promote the expression of a more juvenile-like phenotype for cells of the nucleus pulposus by reducing adhesive ligand presentation. Here we show how polymer stiffness combined with adhesive ligand presentation can be controlled to be supportive of nucleus pulposus cell phenotype and biosynthesis.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Adesivos , Adulto , Humanos , Laminina , Ligantes , Fenótipo
18.
Connect Tissue Res ; 50(5): 294-306, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19863388

RESUMO

Intervertebral disc (IVD) disorders are believed to be related to aging-related cell loss and phenotypic changes, as well as biochemical and structural changes in the extracellular matrix of the nucleus pulposus (NP) region. Previously, we found that the laminin gamma1 chain was more highly expressed in immature NP porcine tissues, in parallel with the expression pattern for a laminin receptor, integrin alpha6 subunit, as compared to adjacent anulus fibrosus region. This result suggests that cell-matrix interactions may be unique to the immature NP. However, the identity of laminin isoforms specific to immature or mature NP tissues, their associated receptors, and functional significance are still poorly understood. In this study, we evaluated the zonal-specific expression of the laminin chains, receptors (i.e., integrins), and other binding proteins in immature tissue and isolated cells of rat, porcine and human intervertebral disc. Our goal was to reveal features of cellular environment and cell-matrix interactions in the immature NP. Results from both immunohistochemical staining and flow cytometry analysis found that NP cells expressed higher levels of the laminin alpha5 chain, laminin receptors (integrin alpha3, alpha6, beta4 subunit, and CD239), and related binding proteins (CD151), as compared to cells from adjacent anulus fibrosus. These differences suggest that laminin interactions with NP cells are distinct from that of the anulus fibrosus and that laminins may be important contributors to region-specific IVD biology. The revealed laminin isoforms, their receptors, and related binding proteins may be used as distinguishing features of these immature NP cells in the intervertebral disc.


Assuntos
Proteínas de Transporte/metabolismo , Condrócitos/metabolismo , Disco Intervertebral/crescimento & desenvolvimento , Disco Intervertebral/metabolismo , Laminina/metabolismo , Receptores de Laminina/metabolismo , Adolescente , Animais , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Criança , Pré-Escolar , Condrócitos/citologia , Matriz Extracelular/metabolismo , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Integrina beta4/metabolismo , Disco Intervertebral/citologia , Laminina/química , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Sus scrofa , Tetraspanina 24
19.
Sci Rep ; 9(1): 3759, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842475

RESUMO

Low back pain is associated with degeneration of the intervertebral disc, but specific mechanisms of pain generation in this pathology remain unknown. Sensory afferent nerve fiber growth into the intervertebral disc after injury-induced inflammation may contribute to discogenic pain. We describe a clinically relevant behavioral phenotype in a rodent model of chronic intervertebral disc degeneration which provides a means to map sensory neuron changes to a single affected lumbar intervertebral disc. Unilateral disc puncture of one lumbar intervertebral disc revealed a bilateral behavioral phenotype characterized by gait changes and decreased activity. Moreover, neurons extracted from the dorsal root ganglia in animals with intervertebral disc injury demonstrated altered TRPV1 activation in vitro independent of exogenous NGF administration. Finally, neuronal nuclear hypertrophy and elevated expression of p75NTR provide evidence of active adaptation of innervating sensory neurons in chronic intervertebral disc degeneration. Therefore, this model and findings provide the template for future studies to establish specific mechanisms of nociceptive pain in chronic intervertebral disc degeneration.


Assuntos
Gânglios Espinais/fisiopatologia , Degeneração do Disco Intervertebral/fisiopatologia , Dor Lombar/etiologia , Animais , Modelos Animais de Doenças , Feminino , Análise da Marcha , Degeneração do Disco Intervertebral/complicações , Dor Lombar/fisiopatologia , Plasticidade Neuronal , Projetos Piloto , Ratos , Ratos Sprague-Dawley
20.
Biophys J ; 95(4): 2116-24, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18487290

RESUMO

Cells within fibrocartilaginous tissues, including chondrocytes and fibroblasts of the meniscus, ligament, and tendon, regulate cell biosynthesis in response to local mechanical stimuli. The processes by which an applied mechanical load is transferred through the extracellular matrix to the environment of a cell are not fully understood. To better understand the role of mechanics in controlling cell phenotype and biosynthetic activity, this study was conducted to measure strain at different length scales in tissue of the fibrocartilaginous meniscus of the knee joint, and to define a quantitative parameter that describes the strain transferred from the far-field tissue to a microenvironment surrounding a cell. Experiments were performed to apply a controlled uniaxial tensile deformation to explants of porcine meniscus containing live cells. Using texture correlation analyses of confocal microscopy images, two-dimensional Lagrangian and principal strains were measured at length scales representative of the tissue (macroscale) and microenvironment in the region of a cell (microscale) to yield a strain transfer ratio as a measure of median microscale to macroscale strain. The data demonstrate that principal strains at the microscale are coupled to and amplified from macroscale principal strains for a majority of cell microenvironments located across diverse microstructural regions, with average strain transfer ratios of 1.6 and 2.9 for the maximum and minimum principal strains, respectively. Lagrangian strain components calculated along the experimental axes of applied deformations exhibited considerable spatial heterogeneity and intersample variability, and suggest the existence of both strain amplification and attenuation. This feature is consistent with an in-plane rotation of the principal strain axes relative to the experimental axes at the microscale that may result from fiber sliding, fiber twisting, and fiber-matrix interactions that are believed to be important for regulating deformation in other fibrocartilaginous tissues. The findings for consistent amplification of macroscale to microscale principal strains suggest a coordinated pattern of strain transfer from applied deformation to the microscale environment of a cell that is largely independent of these microstructural features in the fibrocartilaginous meniscus.


Assuntos
Mecanotransdução Celular/fisiologia , Meniscos Tibiais/citologia , Meniscos Tibiais/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Elasticidade , Técnicas In Vitro , Estresse Mecânico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA