Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biol Cell ; 116(6): e2300127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593304

RESUMO

BACKGROUND: Spermatogenesis is a fundamental process crucial for male reproductive health and fertility. Exosomes, small membranous vesicles released by various cell types, have recently garnered attention for their role in intercellular communication. OBJECTIVE: This review aims to comprehensively explore the role of exosomes in regulating spermatogenesis, focusing on their involvement in testicular development and cell-to-cell communication. METHODS: A systematic examination of literature was conducted to gather relevant studies elucidating the biogenesis, composition, and functions of exosomes in the context of spermatogenesis. RESULTS: Exosomes play a pivotal role in orchestrating the complex signaling networks required for proper spermatogenesis. They facilitate the transfer of key regulatory molecules between different cell populations within the testes, including Sertoli cells, Leydig cells, and germ cells. CONCLUSION: The emerging understanding of exosome-mediated communication sheds light on novel mechanisms underlying spermatogenesis regulation. Further research in this area holds promise for insights into male reproductive health and potential therapeutic interventions.


Assuntos
Exossomos , Infertilidade Masculina , Espermatogênese , Masculino , Espermatogênese/fisiologia , Exossomos/metabolismo , Humanos , Infertilidade Masculina/terapia , Infertilidade Masculina/metabolismo , Animais , Comunicação Celular , Células de Sertoli/metabolismo , Testículo/metabolismo , Células Intersticiais do Testículo/metabolismo , Transdução de Sinais
2.
Biol Cell ; 116(4): e2300123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470182

RESUMO

The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.


Assuntos
Neoplasias , Testículo , Masculino , Humanos , Testículo/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Microambiente Tumoral
3.
Med J Islam Repub Iran ; 37: 123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318412

RESUMO

Background: Amyloid-beta (Aß) production is a normal physiological process, and an imbalance in Aß production/excretion rate is the basis of the plaque load increase in AD. LRP1 is involved in both central clearance of Aß from the CNS and transport of Aß toward peripheral organs. In this study, the effect of silymarin combination compared to rosuvastatin and placebo on neuro-metabolites and serum levels of LRP1 and Aß1-42 proteins and oxidative stress enzymes and lipid and cognitive tests of Iranian AD patients. Methods: In this double-blind placebo-controlled study, thirty-six mild AD patients were divided into groups (n=12) of silymarin 140mg, placebo, and rosuvastatin 10mg. Medications were administered 3 times a day for 6 months. Clinical tests, lipid profile (TG, HDL, TC, and LDL), Aß1-42, and LRP1 markers were measured at the beginning and end of the intervention. Magnetic resonance spectroscopy (MRS) was used to measure metabolites. Using SPSS software a one-way ANOVA test was used to compare the means of the quantitative variables and Pearson and Spearman's correlations to measure the correlation. GraphPad Prism software was used for drawing graphs. P < 0.05 was considered a significant. Results: The levels of LRP1 and Aß1-42 in the silymarin group were significantly increased compared to the other groups (P < 0.05). NAA/mI in the silymarin group had a significant increase compared to both placebo and rosuvastatin groups (P < 0.05). Right and left hippocampal mI/Cr directly correlated with TG (r = 0.603, P = 0.003 and r = 0.595, P = 0.004, respectively). NAA/Cr of the right and left hippocampus was inversely related to TG (r = -0.511, P = 0.0033, and r = -0.532, P = 0.0021, respectively). NAA/Cr and NAA/mI of bilateral hippocampi directly correlated with HDL (P < 0.05). An inverse correlation was observed between the Aß1-42 and mI/Cr of the right and left hippocampus (r = -0.661, P = 0.000 and r = -0.638, P = 0.000, respectively). Conclusion: Donepezil and silymarin improved lipid profile associated with increased NAA/Cr, and decreased mI/Cr, in AD patients. Biomarker NAA/mI can be clinically significant in examining AD pathology. Measurement of the lipid factors and neurometabolites can be a suitable method for monitoring this disease.

4.
Cell Biochem Funct ; 39(8): 983-990, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34374101

RESUMO

Mesenchymal stem cell (MSC)-based cell therapy can provide opportunities for the treatment of various diseases. However, when used in vivo, these cells should be labelled and monitored by a non-invasive method during delivery to the desired locations within the body. This study describes a biomimicry method that effectively labels human Wharton's jelly-derived MSCs (hWJ-MSCs) with a photoacoustics (PA) contrast agent, gold nanorods (GNRs), without the need for transfection agents (TAs). In this method for cell labelling, the hWJ-MSCs were co-incubated with non-adherent cells isolated from fresh umbilical cord for 2 days immediately before incubation with GNRs. Next, hWJ-MSCs were labelled with the GNRs at a concentration of approximately 1010 nanorads/mL (NR/mL) followed by transmission electron microscopy (TEM) and inductively coupled plasma mass spectroscopy (ICP-MS) to verify their labelling effectiveness. The GNRs-labelled MSCs prepared by this method had an intracellular gold (Au) concentration of 3.4 ± 0.4 pg/cell, which is an acceptable amount for cell labelling.


Assuntos
Materiais Biomiméticos/química , Ouro/química , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Geleia de Wharton/citologia , Humanos
5.
Metab Brain Dis ; 36(6): 1381-1390, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143376

RESUMO

Chronic methamphetamine (meth) abuse can lead to certain deficits in the hippocampal function by affecting the hippocampal neurogenesis and plasticity. To determine whether cannabidiol (CBD) can promote proliferation and maturation of neuronal progenitor cells, this study investigated the CBD effect on neurogenesis in the hippocampal dentate gyrus (DG) following chronic exposure to meth in rats. The rats received 2 mg/kg of meth twice a day for ten days. Next, immunofluorescence was performed to evaluate the effect of intracerebroventricular (ICV) administration of CBD (50 µg/5 µL) over an abstinence period (ten days) on the expression levels of neurogenesis markers, such as Ki67, NeuN, and doublecortin (DCX). Moreover, neuronal degeneration in the hippocampus was assessed using Nissl staining. According to our findings, repeated ICV administration of CBD improved cell proliferation and neurogenesis and increased the number of Ki-67 and DCX-positive cells in the abstinence period. Meanwhile, meth treatment subjects caused a significant decrease in the number of neurogenesis makers, as compared to the control group. The neurogenesis markers (Ki-67 and DCX) could be somewhat reversed, while NeuN did not show any significant increase in the CBD group. Our findings demonstrated that CBD can induce neuroprotective effects by modulating neurogenesis. Therefore, it can provide a promising therapeutic approach to improve cognitive performance following chronic exposure to psychostimulant drugs, including meth.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/patologia , Canabidiol/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Giro Denteado/efeitos dos fármacos , Giro Denteado/crescimento & desenvolvimento , Metanfetamina/toxicidade , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Injeções Intraventriculares , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
Behav Pharmacol ; 31(4): 385-396, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032100

RESUMO

Neuropsychiatric disorders, such as addiction, are associated with cognitive impairment, including learning and memory deficits. Previous research has demonstrated that the chronic use of methamphetamine (METH) induces long-term cognitive impairment and cannabidiol (CBD), as a neuroprotectant, can reverse spatial memory deficits induced by drug abuse. The study aimed to evaluate the effect of CBD on METH-induced memory impairment in rats chronically exposed to METH (CEM). For the induction of CEM, animals received METH (2 mg/kg, twice/day) for 10 days. Thereafter, the effect of intracerebroventricular (ICV) administration of CBD (32 and 160 nmol) during the (10 days) abstinence period on spatial memory was evaluated using the Y-Maze test, while recognition memory was examined using the novel object recognition (NOR) test. The results revealed a significant increase in the motor activity of METH-treated animals compared with the control group and, after the 10-day abstinence period, motor activity returned to baseline. Notably, the chronic administration of METH had impairing effects on spontaneous alternation performance and recognition memory, which was clearly observed in the NOR test. Additionally, although the ICV administration of CBD (160 nmol) could reverse long-term memory, a lower dose (32 nmol) did not result in any significant increase in exploring the novel object during short-term memory testing. These novel findings suggest that the chronic administration of METH induces memory impairment and presents interesting implications for the potential use of CBD in treating impairment deficits after chronic exposure to psychostimulant drugs such as METH.


Assuntos
Canabidiol/farmacologia , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Animais , Canabidiol/administração & dosagem , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Metanfetamina/efeitos adversos , Ratos , Reconhecimento Psicológico/efeitos dos fármacos
7.
Metab Brain Dis ; 34(3): 805-819, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644018

RESUMO

Ethanol is known as an effective agent against cerebral lesions after ischemia. Modafinil is a stimulant of the central nervous system (CNS) with antioxidant properties. We assessed the neuroprotective effect of modafinil in combination with ethanol after focal cerebral ischemia. Male wistar rats weighing 280-300 g were divided into nine groups (n = 12 each group): The groups consisted of the MCAO (middle cerebral artery occlusion) group (i.e. ischemia without treatment); the vehicle group(Dimethylsulfoxide); the modafinil group including three subgroups which pretreated with Modafinil (10, 30, 100 mg/kg), respectively, for seven days prior to the induction of MCAO; the ethanol group which received 1.5g/kg ethanol at the time of reperfusion; and modafinil+ethanol group which was divided into three subgroups that received three doses of modanifil (10, 30,100 mg/kg), respectively, for seven days prior to MCAO as well as ethanol at the time of reperfusion. Transient cerebral ischemia was induced by 60-min intraluminal occlusion of the right middle cerebral artery. Edema, infarct volume, glial scar formation (gliosis) and apoptosis were analyzed. The ethanol alone treatment (with a less significant effect), modafinil (in a dose-dependent way), and the combination of modafinil and ethanol significantly decreased the brain infarct volume, edema, apoptosis, and gliosis (P ≤ 0.05). Additionally, modafinil+ethanol mediated the restoration of aerobic metabolism and hyper-glycolysis suppress, thereby resulting in an increase in pyruvate dehydrogenase and a decrease in lactate dehydrogenase activity, respectively, which ultimately reduced oxidative reperfusion injury. These results demonstrate that pretreatment with modafinil (100 mg/kg) and modafinil+ethanol(1.5 g/kg) may prevent ischemic brain injuries.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Etanol/farmacologia , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo
8.
J Chemother ; 36(6): 506-519, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38130211

RESUMO

Sonic hedgehog (SHH) medulloblastoma etiology is associated with the SHH molecular pathway activation at different levels. We investigated the effect of arsenic trioxide as a downstream-level inhibitor of the SHH signaling pathway on morphology, cytotoxicity, migration, and SHH-related and apoptotic gene expression of DAOY cells. Cells were treated at various arsenic trioxide (ATO)concentrations (1, 2, 3, 5, and 10 µM) for different times (24 and 48 hr). Following treatments, the morphology of the cells was investigated at ×20 and ×40 magnification by an inverted microscope. Then, cytotoxicity was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. Cell migration was analyzed through the wound-healing assay. Furthermore, the expression of SHH-related (GLI1, GLI2, SMO, and MYCN) and apoptotic genes (BAX, BCL2, and TP53) was assessed by real-time quantitative polymerase chain reaction (qPCR). Finally, GLI1, SMO, and MYCN markers were analyzed through immunocytochemistry. Data were analyzed by SPSS (version 16) and P≤0.05 was considered significant. Morphological changes were seen at 3 and 2 µM in 24 and 48 hr of treatment, respectively. The MTT assay showed a dose-dependent cytotoxicity indicating an IC50 value of 3.39±0.35 and 2.05±0.64 µM in 24 and 48hr treatment, respectively. In addition, the trypan blue assay showed higher IC50 values of 4.29±0.25 and 3.92±0.22 µM in 24 and 48 hr treatment, respectively. The wound-healing assay indicated a dose-dependent reduction of cell migration speed showing a 50% reduction at 2.89±0.26 µM. Significant downregulation of GLI1 and GLI2, as well as the upregulation of BAX, BAX/BCL2 ratio, and TP53 were evident. Significant increases in GLI1 and MYCN markers were also evident in immunocytochemistry. ATO, as a downstream effective inhibitor of the SHH pathway, substantially leads to cell death, cell migration inhibition, apoptosis upregulation, and downregulation of SHH target genes in DAOY medulloblastoma. Since ATO is a toxic chemotherapeutic agent, it must be used at low concentrations (2 µM) in order not to damage healthy cells.


Assuntos
Apoptose , Trióxido de Arsênio , Neoplasias Cerebelares , Proteínas Hedgehog , Meduloblastoma , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco , Trióxido de Arsênio/farmacologia , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Antineoplásicos/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína Gli2 com Dedos de Zinco/genética , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Arsenicais/farmacologia , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Nucleares
9.
Sci Rep ; 14(1): 15551, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969714

RESUMO

A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Proliferação de Células/genética , Diferenciação Celular/genética , Sangue Fetal/citologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Perfilação da Expressão Gênica
10.
Macromol Biosci ; 24(2): e2300342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37729950

RESUMO

Numerous scaffolds are developed in the field of testicular bioengineering. However, effectively replicating the spatial characteristics of native tissue, poses a challenge in maintaining the requisite cellular arrangement essential for spermatogenesis. In order to mimic the structural properties of seminiferous tubules, the objective is to fabricate a biocompatible tubular scaffold. Following the decellularization process of the testicular tissue, validation of cellular remnants' elimination from the specimens is conducted using 4',6-diamidino-2-phenylindole staining, hematoxylin and eosin staining, and DNA content analysis. The presence of extracellular matrix (ECM) components is confirmed through Alcian blue, Orcein, and Masson's trichrome staining techniques. The electrospinning technique is employed to synthesize the scaffolds using polycaprolactone (PCL), extracted ECM, and varying concentrations of graphene oxide (GO) (0.5%, 1%, and 2%). Subsequently, comprehensive evaluations are performed to assess the properties of the synthetic scaffolds. These evaluations encompass Fourier-transform infrared spectroscopy, scanning electron microscopy imaging, scaffold degradation testing, mechanical behavior analysis, methylthiazolyldiphenyl-tetrazolium bromide assay, and in vivo biocompatibility assessment. The PCL/decellularized extracellular matrix with 0.5% GO formulation exhibits superior fiber morphology and enhanced mechanical properties, and outperforms other groups in terms of in vitro biocompatibility. Consequently, these scaffolds present a viable option for implementation in "in vitro spermatogenesis" procedures, holding promise for future sperm production from spermatogonial cells.


Assuntos
Grafite , Medicina Reprodutiva , Alicerces Teciduais , Masculino , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Biomimética , Sêmen , Poliésteres/farmacologia , Poliésteres/química , Matriz Extracelular/química , Túbulos Seminíferos
11.
Avicenna J Med Biotechnol ; 16(3): 156-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132634

RESUMO

This review addresses the current understanding of In Vitro Maturation (IVM) treatment, including indications and effective treatment protocols influencing oocyte developmental competence. A comprehensive literature search was performed to gather relevant studies, clinical trials, and reviews related to IVM. Databases such as PubMed, MEDLINE, and pertinent medical journals were searched. The selected literature was analyzed and synthesized to offer a comprehensive overview. IVM has emerged as a promising technique for inducing maturation in immature oocytes across various developmental stages. Its applications extend to areas utilizing In Vitro Fertilization (IVF), gaining traction as a treatment option for Polycystic Ovary Syndrome (PCOS) and fertility preservation in cancer patients. Recent advancements have led to improved global pregnancy rates, resulting in successful births. IVM also holds potential in reducing risks associated with conventional IVF, including ovarian hyperstimulation syndrome and multiple pregnancies. Despite these advantages, IVM adoption in clinical practice remains limited. Ongoing research aims to refine therapeutic protocols and expand clinical indications. IVM holds promise in assisted reproductive technology, spanning applications from cancer patient fertility preservation to addressing PCOS. Enhanced pregnancy rates highlight efficacy, while risk reduction compared to IVF underscores its importance. Further research is needed for optimal use across patient groups, emphasizing protocol refinement and expanded applications.

13.
Brain Res ; 1836: 148936, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649134

RESUMO

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Assuntos
Diferenciação Celular , Leite Humano , Humanos , Diferenciação Celular/fisiologia , Células Cultivadas , Alicerces Teciduais , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neurônios/metabolismo , Hidrogéis , Sobrevivência Celular/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco/fisiologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Tubulina (Proteína)/metabolismo , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Peptídeos , Antígenos Nucleares
14.
Toxicol Rep ; 10: 104-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685271

RESUMO

Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.

15.
Mol Neurobiol ; 60(4): 1797-1809, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36576709

RESUMO

The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in twenty four adult female C57Bl/6 mice were inducted the EAE model; FLX treatment which was performed (10 mg/kg/IP) and CBD; were treated (5 mg/kg/IP); and their cerebellum was used for Western blotting, real-time PCR to autophagic markers of LC3II, Beclin-1, and apoptotic markers Bax and Bcl2 evaluation and Luxol Fast Blue staining to the assessment of demyelination. The level of autophagic markers was expressively elevated (P < 0.01) but the pro-apoptotic markers and Bax/Bcl2 ratio were reduced (P < 0.05). Luxol Fast Blue staining confirmed the noteworthy diminution of demyelination in treatment groups (P < 0.001). This finding clarified that FLX and CBD ameliorate the severity of the EAE model. Combinatory treatments of these two agents are suggested for future investigations.


Assuntos
Canabidiol , Encefalomielite Autoimune Experimental , Doenças Neurodegenerativas , Animais , Camundongos , Feminino , Encefalomielite Autoimune Experimental/metabolismo , Canabidiol/farmacologia , Fluoxetina , Proteína X Associada a bcl-2/metabolismo , Cerebelo/metabolismo , Autofagia , Camundongos Endogâmicos C57BL
16.
JBRA Assist Reprod ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962973

RESUMO

OBJECTIVE: Vitamin D3 has been shown to be effective in the treatment of PCOS. However, due to its poor solvability and bioavailability, effective time is delayed and dosage requirements are increased. In our previous study, we demonstrated that PhytoSolve containing VD3 is more effective than vitamin D3 alone in the treatment of PCOS. In this study, we aimed to investigate the effect of this vitamin D3 formulation on gene expression involved in implantation in patients with PCOS. METHODS: To create PhytoSolve, Lipid S75, glycerol, and MCT oil were combined using a sonicator probe. Six groups, each consisting of 36 female Naval Medical Research Institute (NMRI) mice, were included in the following groups: control; sham; PCOS; PhytoSolve; PhytoSolve containing VD3; and vitamin D3. The mice were given DHEA injections to induce PCOS. After administering PhytoSolve containing VD3 and vitamin D3 by gavage for one week from the 13th day of model creation, the female mice were mated and endometrial tissue was collected for analysis of LIF, ß-integrin, and HOXA10 proteins and genes. RESULTS: Compared to the group receiving vitamin D3 alone, the group receiving PhytoSolve containing vitamin D3 showed a significant increase in the expression of LIF, ß-integrin, and HOXA10 genes (p<0.05). Although there was an increase in the expression of ß-integrin and HOXA10 proteins in the group given PhytoSolve containing vitamin D3 compared to the group given vitamin D3, this increase was not significant. However, the increase in LIF protein expression in the group given PhytoSolve containing vitamin D3 was significant when compared to the group given vitamin D3 (p<0.05). CONCLUSIONS: The use of PhytoSolve containing vitamin D3 was more effective than vitamin D3 alone. The PhytoSolve formulation might be a useful solution for medications with limited solubility and bioavailability.

17.
Rep Biochem Mol Biol ; 12(2): 233-240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317817

RESUMO

Background: T-cell acute lymphoblastic leukemia (T-ALL) is known as an aggressive malignant disease resulting from the neoplastic alteration of T precursor cells. Although treatment with stringent chemotherapy regimens has achieved an 80% cure rate in children, it has been associated with lower success rates in adult treatment. Silver nanoparticles (Ag-NPs) have a toxic effect on human breast cancer cells, human glioblastoma U251 cells, and chronic myeloid leukemia cells in vitro. This study aimed to investigate the effect of Ag nanostructures (Ag-NSs) on Jurkat cells' viability and apoptosis. Methods: The Jurkat cell line was acquired. Following the synthesis Ag-NSs and their characterization, they were incubated with Jurkat cells at different doses for 24, 48, and 72 hours to determine the optimal time and dose. Two groups were examined: a control group with Jurkat cells without nanostructure maintained in the same medium as the cells in the treatment group without changing the medium, and a treatment group with cells treated with the Ag nanostructure solution at a dose of 75 µg/ml for 48 hours according to the MTT results. After 48 hours, the cells from the two groups were used for the q RT-PCR of the apoptotic genes (BAX, BCL-2, and CASPASE-3). Results: According to our results, the rod-shaped silver nanostructures had a size of about 50 nm, increased apoptotic markers, including BAX and CASPASE-3, and induced cell death. Conclusions: Ag-NSs have anticancer properties and can induce apoptosis of cells; therefore, they may be a potential candidate for the treatment of T-cell acute lymphoblastic leukemia.

18.
J Funct Biomater ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132810

RESUMO

Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.

19.
Eur J Transl Myol ; 33(1)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36101996

RESUMO

In this study, we aimed to evaluate the effect of Bacillus coagulans and Lactobacillus casei probiotics on liver damage induced by silver nanoparticles and expression of Bax, Bcl2 and Caspase 3 genes in rats. 32 adult male Wistar rats were divided into four healthy groups (control), the group receiving silver nanoparticles treated with L. casei, the group receiving silver nanoparticles treated with B. coagulans and the group receiving only silver nanoparticles. The effect of nanoparticles was induced by intraperitoneal injection of silver nanoparticles prepared from nettle at a dose of 50 mg/kg and entered the liver tissue through the bloodstream. Two days after injection, probiotic treatment with 109 CFU was performed by gavage for 30 days. One day after the last gavage, rat liver tissue weight was assessed. Also, the total amount of RNA was extracted from treated, and healthy tissues, as well as induced silver nanoparticles tissues, then evaluated by Real Time PCR. Data were evaluated using one-way Anova, Tukey test. Based on the biochemical results of this study, exposure of rats to different concentrations of silver nanoparticles compared with the control group caused a significant increase in the serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), alkaline phosphatase (ALP), especially at high concentrations. Evaluation of damage and histopathological lesions showed that silver nanoparticles in different concentrations caused different damage to liver tissue, so that, necrosis, inflammatory cell infiltration and vascular degeneration were observed at different concentrations by silver nanoparticles. In the present study, the effects of L. casei cell extract on increasing the expression of Bax proapoptotic gene and decreasing Bcl2 gene expression in cancer cells and inducing programmed cell death were shown. In this study, the expression of Bax, Bcl-2 and Caspase-3 genes in the group receiving silver nanoparticles and in the groups treated with probiotics showed significant changes compared to the control group. It can be concluded that the function of silver nanoparticles and the effects of relative improvement of probiotics are from the internal route of apoptosis and factors such as dose, nanoparticle size and nanoparticle coating have an important role in the toxicity of silver nanoparticles, thus the destructive effects on liver tissue could be increased by increasing the concentration of silver nanoparticles.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36048545

RESUMO

Introduction: Methamphetamine (METH) is an addictive psychostimulant that facilitates dopamine transmission to the nucleus accumbens (NAc), resulting in alterations in the mesocorticolimbic brain regions. Cannabidiol (CBD) is considered the second most abundant component of cannabis and is believed to decrease the METH effects. Reversing psychostimulant-induced abnormalities in the mesolimbic dopamine system is the main mechanism for this effect. Various other mechanisms have been proposed: increasing endocannabinoid system activity and modulating gamma-aminobutyric acid (GABA) and glutamate neurons in NAc. However, the exact CBD action mechanisms in reducing drug addiction and relapse vulnerability remain unclear. Methods and Results: The present study aimed to investigate the effects of intracerebroventricular (ICV) administrating 5, 10, and 50 µg/5 µL CBD solutions on the extinction period and reinstatement phase of a METH-induced conditioned place preference. This research also aimed to examine the NAc D1-like dopamine receptor (D1R) and D2-like dopamine receptor (D2R) roles in the effects of CBD on these phases, as mentioned earlier, using SCH23390 and sulpiride microinjections as an antagonist of D1R and D2R. The obtained results showed that microinjection of CBD (10 and 50 µg/5 µL, ICV) suppressed the METH-induced reinstatement and significantly decreased mean extinction latency in treated groups compared to both vehicles and/or untreated control groups. In addition, the results demonstrated that administrating intra-accumbal SCH23390 (1 and 4 µg/0.5 µL saline) reversed the inhibitory effects of CBD on extinction and reinstatement phases while different doses of sulpiride (0.25, 1, and 4 µg/0.5 µL; dimethyl sulfoxide 12%) could not alter the CBD effects. Conclusions: In summary, this study showed that CBD made shorter extinction latencies and suppressed the METH reinstatement, in part, by interacting with D1R but not D2R in the NAc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA