Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Restor Ecol ; : e13646, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603134

RESUMO

Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well-established projects. In the last 2 years, the COVID-19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self-sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.

2.
Mol Ecol ; 22(18): 4644-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23962083

RESUMO

Re-introduction is an important tool for recovering endangered species; however, the magnitude of genetic consequences for re-introduced populations remains largely unknown, in particular the relative impacts of historical population bottlenecks compared to those induced by conservation management. We characterize 14 microsatellite loci developed for the Seychelles paradise flycatcher and use them to quantify temporal and spatial measures of genetic variation across a 134-year time frame encompassing a historical bottleneck that reduced the species to ~28 individuals in the 1960s, through the initial stages of recovery and across a second contemporary conservation-introduction-induced bottleneck. We then evaluate the relative impacts of the two bottlenecks, and finally apply our findings to inform broader re-introduction strategy. We find a temporal trend of significant decrease in standard measures of genetic diversity across the historical bottleneck, but only a nonsignificant downward trend in number of alleles across the contemporary bottleneck. However, accounting for the different timescales of the two bottlenecks (~40 historical generations versus <1 contemporary generation), the loss of genetic diversity per generation is greater across the contemporary bottleneck. Historically, the flycatcher population was genetically structured; however, extinction on four of five islands has resulted in a homogeneous contemporary population. We conclude that severe historical bottlenecks can leave a large footprint in terms of sheer quantity of genetic diversity lost. However, severely depleted genetic diversity does not render a species immune to further genetic erosion upon re-introduction. In some cases, the loss of genetic diversity per generation can, initially at least, be greater across re-introduction-induced bottlenecks.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Aves Canoras/genética , Animais , Conservação dos Recursos Naturais , Evolução Molecular , Marcadores Genéticos , Genética Populacional , Técnicas de Genotipagem , Repetições de Microssatélites , Dados de Sequência Molecular , Dinâmica Populacional , Seicheles , Fatores de Tempo
3.
Mol Phylogenet Evol ; 67(2): 336-47, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416757

RESUMO

We construct a molecular phylogeny of Terpsiphone flycatchers of the Indian Ocean and use this to investigate their evolutionary relationships. A total of 4.4 kb of mitochondrial (cyt-b, ND3, ND2, control region) and nuclear (G3PDH, MC1R) sequence data were obtained from all species, sub-species and island populations of the region. Colonisation of the western Indian Ocean has been within the last two million years and greatly postdates the formation of the older islands of the region. A minimum of two independent continent-island colonisation events must have taken place in order to explain the current distribution and phylogenetic placement of Terpsiphone in this region. While five well-diverged Indian Ocean clades are detected, the relationship between them is unclear. Short intermodal branches are indicative of rapid range expansion across the region, masking exact routes and chronology of colonisation. The Indian Ocean Terpsiphone taxa fall into five well supported clades, two of which (the Seychelles paradise flycatcher and the Mascarene paradise flycatcher) correspond with currently recognised species, whilst a further three (within the Madagascar paradise flycatcher) are not entirely predicted by taxonomy, and are neither consistent with distance-based nor island age-based models of colonisation. We identify the four non-Mascarene clades as Evolutionarily Significant Units (ESUs), while the Mascarene paradise flycatcher contains two ESUs corresponding to the Mauritius and Réunion subspecies. All six ESUs are sufficiently diverged to be worthy of management as if they were separate species. This phylogenetic reconstruction highlights the importance of sub-specific molecular phylogenetic reconstructions in complex island archipelago settings in clarifying phylogenetic history and ESUs that may otherwise be overlooked and inadvertently lost. Our phylogenetic reconstruction has identified hidden pockets of evolutionary distinctiveness, which provide a valuable platform upon which to re-evaluate investment of conservation resources within the Terpsiphone flycatchers of the Indian Ocean.


Assuntos
Evolução Molecular , Filogenia , Aves Canoras/genética , Animais , Variação Genética , Oceano Índico , Proteínas Mitocondriais/genética , Proteínas Nucleares
4.
Science ; 373(6560): eabf0861, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516798

RESUMO

Marine Protected Areas (MPAs) are conservation tools intended to protect biodiversity, promote healthy and resilient marine ecosystems, and provide societal benefits. Despite codification of MPAs in international agreements, MPA effectiveness is currently undermined by confusion about the many MPA types and consequent wildly differing outcomes. We present a clarifying science-driven framework­The MPA Guide­to aid design and evaluation. The guide categorizes MPAs by stage of establishment and level of protection, specifies the resulting direct and indirect outcomes for biodiversity and human well-being, and describes the key conditions necessary for positive outcomes. Use of this MPA Guide by scientists, managers, policy-makers, and communities can improve effective design, implementation, assessment, and tracking of existing and future MPAs to achieve conservation goals by using scientifically grounded practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA