Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30389668

RESUMO

Kinetochores are supramolecular assemblies that link centromeres to microtubules for sister chromatid segregation in mitosis. For this, the inner kinetochore CCAN/Ctf19 complex binds to centromeric chromatin containing the histone variant CENP-A, but whether the interaction of kinetochore components to centromeric nucleosomes is regulated by posttranslational modifications is unknown. Here, we investigated how methylation of arginine 37 (R37Me) and acetylation of lysine 49 (K49Ac) on the CENP-A homolog Cse4 from Saccharomyces cerevisiae regulate molecular interactions at the inner kinetochore. Importantly, we found that the Cse4 N-terminus binds with high affinity to the Ctf19 complex subassembly Okp1/Ame1 (CENP-Q/CENP-U in higher eukaryotes), and that this interaction is inhibited by R37Me and K49Ac modification on Cse4. In vivo defects in cse4-R37A were suppressed by mutations in OKP1 and AME1, and biochemical analysis of a mutant version of Okp1 showed increased affinity for Cse4. Altogether, our results demonstrate that the Okp1/Ame1 heterodimer is a reader module for posttranslational modifications on Cse4, thereby targeting the yeast CCAN complex to centromeric chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Centrômero/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Organismos Geneticamente Modificados , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 117(10): 5386-5393, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32079723

RESUMO

The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Imunoprecipitação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
Plant Cell Environ ; 40(11): 2644-2662, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28555890

RESUMO

Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/metabolismo , Contagem de Células , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredução , Estresse Oxidativo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica
4.
Hum Gene Ther ; 35(1-2): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062776

RESUMO

Despite decades of research in adeno-associated virus (AAV) and the role of adenovirus in production, the interplay of AAV and adenovirus is not fully understood. Specific regions of the adenoviral genome containing E1, E2a, E4 open reading frame (ORF), and VA RNA have been demonstrated as necessary for AAV production; however, incorporating these regions into either a producer cell line or subcloning into an Ad helper plasmid may lead to inclusion of neighboring adenoviral sequence or ORFs with unknown function. Because AAV is frequently used in gene therapies, removing excessive adenovirus sequences improves the Ad helper plasmid size and manufacturability, and may lead to safer vectors for patients. Furthermore, deepening our understanding of the helper virus genes required for recombinant AAV (rAAV) production has the potential to increase yields and manufacturability of rAAV for clinical and commercial applications. One region continuously included in various Ad helper plasmid iterations is the adenoviral E2a promoter region that appears to be necessary for E2a expression. Due to the compact nature of viral genomes, the E2a promoter region overlaps with the Hexon Assembly/100K protein and the L4 region. The L4 region, which contains the coding sequences for 22K and 33K proteins, had not been thought to be necessary for AAV production. Through molecular techniques, this study demonstrates that the adenoviral 22K protein is essential for rAAV production in HEK293 cells by triple transfection and that the 33K protein synergistically increases rAAV yield.


Assuntos
Adenoviridae , Dependovirus , Humanos , Dependovirus/genética , Dependovirus/metabolismo , Adenoviridae/genética , Células HEK293 , Plasmídeos , Transfecção , Proteínas Virais/genética , Vetores Genéticos/genética
5.
Front Plant Sci ; 8: 214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326087

RESUMO

The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripening-related genes, and leads to an increase in the levels of various amino acids (mostly proline, ß-alanine, and phenylalanine), γ-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.

6.
Nat Plants ; 2: 16013, 2016 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-27249348

RESUMO

Gibberellins (GAs) and brassinosteroids (BRs) are important phytohormones that control plant development and responses to environmental cues by involving DELLA proteins and BRASSINAZOLE-RESISTANT1 (BZR1) respectively as key transcription factors. Here, we reveal a new role for JUNGBRUNNEN1 (JUB1) as a transcriptional regulator of GA/BR signalling in Arabidopsis thaliana. JUB1 directly represses the hormone biosynthesis genes GA3ox1 and DWARF4 (DWF4), leading to reduced levels of GAs and BRs and typical GA/BR deficiency phenotypes exhibiting short hypocotyls, dwarfism, late flowering and male sterility. JUB1 also directly represses PHYTOCHROME INTERACTING FACTOR4 (PIF4), a transcription factor connecting hormonal and environmental stimuli. On the other hand, JUB1 activates the DELLA genes GA INSENSITIVE (GAI) and RGA-LIKE 1 (RGL1). In addition, BZR1 and PIF4 act as direct transcriptional repressors upstream of JUB1, establishing a negative feedback loop. Thus, JUB1 forms the core of a robust regulatory module that triggers DELLA accumulation, thereby restricting cell elongation while concomitantly enhancing stress tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Giberelinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Fenótipo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Transcrição Gênica
7.
Plant Signal Behav ; 11(6): e1181245, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27159137

RESUMO

Phytohormones act in concert to coordinate plant growth and the response to environmental cues. Gibberellins (GAs) are growth-promoting hormones that recently emerged as modulators of plant immune signaling. By regulating the stability of DELLA proteins, GAs intersect with the signaling pathways of the classical primary defense hormones, salicylic acid (SA) and jasmonic acid (JA), thereby altering the final outcome of the immune response. DELLA proteins confer resistance to necrotrophic pathogens by potentiating JA signaling and raise the susceptibility to biotrophic pathogens by attenuating the SA pathway. Here, we show that JUB1, a core element of the GA - brassinosteroid (BR) - DELLA regulatory module, functions as a negative regulator of defense responses against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and mediates the crosstalk between growth and immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Pseudomonas syringae/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Plant Signal Behav ; 7(12): 1518-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073024

RESUMO

We recently reported that the NAC transcription factor JUNGBRUNNEN1 (JUB1; ANAC042) extends longevity and increases tolerance to heat stress in Arabidopsis thaliana when overexpressed, while the opposite is observed in jub1-1 knock-down lines. Here we extend our previous findings by demonstrating that JUB1 also positively regulates plant survival under heat stress when plants were treated by a prior moderate (and non-lethal) temperature regime (so-called priming). We further find that JUB1 shows thermomemory-related expression, similar to two other genes previously reported to be important for thermopriming, i.e., HSFA2, encoding a heat shock factor, and HSA32, encoding a heat shock protein. Our analysis also identifies ASCORBATE PEROXIDASE2 (APX2) and the heat shock protein genes HSP18.2 and HSP21 as thermomemory-expressed genes, revealing them as new candidates for studies to decode the molecular processes controlling thermopriming.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA