Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Invest ; 53(4): 695-711, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504489

RESUMO

Mast cells play important role in acquired and natural immunity making these favorable therapeutic targets in various inflammatory diseases. Here we observed that, pentacyclic tri terpenoid betulinic acid (BA) treatment resulted in a significantly high number (9%) of cells positive for Hoechst and negative for annexin-V indicating that BA could interfere with plasma membrane integrity. The degranulation of both activated and non-activated mast cells was enhanced upon treatment with BA. The pre-treatment of BA had remarkable effect on calcium response in activated mast cells which showed increased calcium influx relative compared to untreated cells. The results also showed potentially less migration of BA treated mast cells signifying the possible effect of BA on cell membrane. BA treatment resulted in a significant increase in mRNA levels of IL-13 while as mRNA levels of other target cytokines, IL-6 and TNF-α seem to be not affected. Moreover, there was global Increase in phosphorylation of signaling proteins and no significant change in phosphorylation of FcεRI receptors indicating that the effect of BA was independent of signaling cascade or FcεRI receptor mediated mast cell aggregation. Overall, these results portray BA potentiates mast cell effector functions by compromising the membrane integrity and independent of FcεRI involvement.


Assuntos
Ácido Betulínico , Degranulação Celular , Membrana Celular , Mastócitos , Triterpenos Pentacíclicos , Receptores de IgE , Triterpenos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Triterpenos Pentacíclicos/farmacologia , Degranulação Celular/efeitos dos fármacos , Receptores de IgE/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Ratos , Fosforilação/efeitos dos fármacos , Citocinas/metabolismo
2.
J Fluoresc ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913089

RESUMO

Free radicals, products of oxidative processes, induce cellular damage linked to diseases like Parkinson's and diabetes due to increased reactive oxygen species (ROS) levels. Catalase, crucial for scavenging ROS, emerges as a therapeutic agent against ailments including atherosclerosis and tumor progression. Its primary function involves breaking down hydrogen peroxide into water and oxygen. Research on catalase-drug interactions reveals structural changes under specific conditions, affecting its activity and cellular antioxidant balance, highlighting its pivotal role in defending against oxidative stress-related diseases. Hence, targeting catalase is considered an effective strategy for controlling ROS-induced cellular damage. This study investigates the interaction between bovine liver catalase and glipizide using spectroscopic and computational methods. It also explores glipizide's effect on catalase activity. More than 20% inhibition of catalase enzymatic activity was recorded in the presence of 50 µM glipizide. To investigate the inhibition of catalase activity by glipizide, we performed a series of binding studies. Glipizide was found to form a complex with catalase with moderate affinity and binding constant in the range of 3.822 to 5.063 × 104 M-1. The binding was spontaneous and entropically favourable. The α-helical content of catalase increased from 24.04 to 29.53% upon glipizide complexation. Glipizide binding does not alter the local environment surrounding the tyrosine residues while a notable decrease in polarity around the tryptophan residues of catalase was recorded. Glipizide interacted with numerous active site residues of catalase including His361, Tyr357, Ala332, Asn147, Arg71, and Thr360. Molecular simulations revealed that the catalase-glipizide complex remained relatively stable in an aqueous environment. The binding of glipizide had a negligible effect on the secondary structure of catalase, and hydrogen bonds persisted consistently throughout the trajectory. These results could aid in the development of glipizide as a potent catalase inhibitor, potentially reducing the impact of reactive oxygen species (ROS) in the human body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA