Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 36(2): e24233, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007357

RESUMO

BACKGROUND: Current autoverification, which is only knowledge-based, has low efficiency. Regular historical data analysis may improve autoverification range determination. We attempted to enhance autoverification by selecting autoverification rules by knowledge and ranges from historical data. This new system was compared with the original knowledge-based system. METHODS: New types of rules, extreme values, and consistency checks were added and the autoverification workflow was rearranged to construct a framework. Criteria for creating rules for extreme value ranges, limit checks, consistency checks, and delta checks were determined by analyzing historical Zhongshan laboratory data. The new system's effectiveness was evaluated using pooled data from 20 centers. Efficiency improvement was assessed by a multicenter process. RESULTS: Effectiveness was evaluated by the true positive rate, true negative rate, and overall consistency rate, as compared to manual verification, which were 77.55%, 78.53%, and 78.3%, respectively for the new system. The original overall consistency rate was 56.2%. The new pass rates, indicating efficiency, were increased by 19%-51% among hospitals. Further customization using individualized data increased this rate. CONCLUSIONS: The improved system showed a comparable effectiveness and markedly increased efficiency. This transferable system could be further improved and popularized by utilizing historical data from each hospital.


Assuntos
Inteligência Artificial , Automação Laboratorial , Testes de Química Clínica , Aplicações da Informática Médica , Estudos de Viabilidade , Humanos , Bases de Conhecimento
2.
Clin Chim Acta ; 555: 117802, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281660

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) continues to increase annually, accounting for about 6.8 million cases in 2017 worldwide. However, there is currently no gold standard for the diagnosis of IBD. METHODS: A method for the detection of four microorganisms in feces by two-dimensional polymerase chain reaction (2D-PCR) has been developed. Plasmids were used to validate the sensitivity and specificity of the method. Clinical samples were tested using a 2D-PCR method. Optimal diagnostic thresholds for IBD were determined based on ROC results. RESULTS: Of the 112 samples, 78 were from IBD patients and 34 from patients with other gastrointestinal (GI) diseases. Thomasclavelia ramosum and univ907-1062 positivity are necessary, and two or more positives of the three bacteria (Thomasclavelia spiroforme, Thomasclavelia saccharogumia or Clostridium cluster XVIII) are the optimal diagnostic thresholds for IBD. The area under the curve was 0.826 with a 95% confidence interval of 0.735-0.981 and a p-value of 0.000, corresponding to a sensitivity of 0.769 and a specificity of 0.853. CONCLUSIONS: Based on the detection results of microorganisms, IBD and GI can be effectively distinguished. The detection of four microorganisms in feces can assist clinicians in the differential diagnosis of IBD. Our experiment aims to provide a better program for early clinical diagnosis and regular dynamic monitoring of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Fezes , Bactérias , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase/métodos
3.
Exp Ther Med ; 26(3): 434, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37602314

RESUMO

Colorectal cancer (CRC) is a common malignant tumor. At present, the in-depth study of the formation, development and treatment of CRC at the molecular and gene levels is a research hot spot. Neurexophilin 4 (NXPH4) expression has been revealed to be abnormally elevated in several types of cancer, but its expression in CRC has not yet been reported. First, relevant databases were used to predict the expression of NXPH4 in CRC and its association with the survival rate of patients with CRC. Subsequently, the expression of NXPH4 in CRC cells was verified through cell experiments. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, wound healing assay, Transwell assay, western blotting and the kits were used to detect the effects of NXPH4 knockdown in CRC cells on cell proliferation, invasion, migration and glycolysis. The association between NXPH4 and forkhead box protein K1 (FOXK1) was predicted using the JASPAR database, and verified through luciferase reporter gene and chromatin immunoprecipitation experiments. The NXPH4 regulation mechanism was also discussed. NXPH4 was revealed to be highly expressed in CRC. NXPH4 knockdown in CRC cells could significantly inhibit cell proliferation and induce apoptosis. NXPH4 knockdown inhibited cell invasion, migration and glycolysis. The aforementioned process could be reversed by further FOXK1 overexpression in CRC cells. In conclusion, FOXK1-regulated NXPH4 promotes proliferation, metastasis and glycolysis in CRC.

4.
Redox Biol ; 53: 102328, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576690

RESUMO

A kinase anchor protein 12(AKAP12)is a scaffold protein that is critical for cell structure maintenance and signal transduction. However, the role of AKAP12 in liver injury remains unclear. Here, we attempt to explore the potential contribution of AKAP12 in liver injury and elucidate its underlying molecular mechanism. We found that AKAP12 deletion in acute liver injury (ALI) activates the PI3K/AKT phosphorylation signaling pathway, induces the increased expression of PCSK6 and its downstream inflammation-related genes, and prompts macrophages to produce a large number of inflammatory factors. And knockdown of PCSK6 by in vivo siRNA assay reversed in liver injury AKAP12Δhep mice, demonstrating that PCSK6 has an important role in ALI. Furthermore, we found that signal transducer and activator of transcription 3 (STAT3) and serine/threonine kinase Akt (AKT) were upregulated in AKAP12Δhep mice of chronic liver injury. To sum up, our study here demonstrates that AKAP12 has a protective role in ALI and chronic liver fibrosis, at least in part through inhibition of the PI3K/AKT/PCSK6 pathway. Our findings provide a new potential treatment for liver injury with important clinical implications.


Assuntos
Proteínas de Ancoragem à Quinase A , Proteínas de Ciclo Celular , Fosfatidilinositol 3-Quinases , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fibrose , Fígado/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Curr Nanosci ; 14(5): 377-383, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30532668

RESUMO

BACKGROUND: Graphitization behavior of diamond has received an increasing interest in nanoscale machining of some hard and brittle materials. Diamond has always been an important and excellent tool material in cutting area. However, the graphitization of the diamond tool is inevitable when it was used in special conditions. It is indicated that the graphitization of diamond crystal has great influence on the wear resistance of diamond cutting tool. The graphitization behavior needs to be investigated extensively in nanoscale with an atomic view. Molecular dynamics simulation provides a useful tool for understanding of the graphitization mechanism of diamond. The investigation on graphi-tization behavior of single crystal diamond can also provide a useful reference for the application of diamond cutting tool.Materials and. METHODS: In this paper, a molecular dynamics (MD) diamond crystal model is built to examine the graphitization behavior of diamond under various conditions. The sixfold ring method was employed to identify the structural characteristics of graphite and diamond. The effects of temperature and crystal orientation on the graphitization of diamond have been revealed. Considering the effect of temperature, the anisotropy of diamond graphitization against various crystal planes is presented and discussed carefully. The nano-metric cutting model of diamond tool evaluated by the sixfold ring meth-od also proves the graphitization mechanisms in atomic view. RESULTS: Results indicate that the sixfold ring method is a reliable method to evaluate the graphitization behavior of diamond crystal. There exists a critical temperature of the graphitization of diamond. The results also show that {111} plane is more easy to get graphitization as compared with other crystal planes. However, {100} plane of diamond model presents the highest anti-graphitization property. CONCLUSION: The obtained results have provided the in-depth understanding on the wear of diamond tool in nano-metric machining and underpin the development of diamond cutting tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA