Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580231

RESUMO

The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U-Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.


Assuntos
Ecossistema , Animais , China , Mudança Climática , Dinossauros/fisiologia , Extinção Biológica , Sedimentos Geológicos/química , Umidade , Isótopos/química , Mercúrio/química , Silicatos/química , Temperatura , Erupções Vulcânicas , Zircônio/química
2.
Gondwana Res ; 93: 243-251, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33584115

RESUMO

COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently causing a human global pandemic. The original virus, along with newer variants, is highly transmissible. Aerosols are a multiphase system consisting of the atmosphere with suspended solid and liquid particles, which can carry toxic and harmful substances; especially the liquid components. The degree to which aerosols can carry the virus and cause COVID-19 disease is of significant research importance. In this study, we have discussed aerosol transmission as the pathway of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction as a consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can be further subdivided into proximal human-exhaled aerosol transmission and potentially more distal ambient aerosol transmission. The human-exhaled aerosol transmission is a direct dispersion of the SARS-CoV-2. The ambient aerosol transmission is an indirect dispersion of the SARS-CoV-2 in which the aerosol acts as a carrier to spread the virus. This indirect dispersion can also stimulate the up-regulation of the expression of SARS-CoV-2 receptor ACE-2 (Angiotensin Converting Enzyme 2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby increasing the incidence and mortality of COVID-19. From the aerosol quality data around the World, it can be seen that often atmospheric pollution has significantly decreased due to factors such as the reduction of traffic, industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the reduction of aerosol pollution levels due to the lockdowns are crucial research subjects.

3.
J Environ Sci (China) ; 97: 96-101, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933744

RESUMO

Emission from burning coals is one of the major sources of the airborne particles in China. We carried out a study on the rare earth elements (REEs) in the inhalable particulate matter (PM10) emitted from burning coals and soil-coal honeycomb briquettes with different volatile contents and ash yields in a combustion-dilution system. Gravimetric analysis indicates that the equivalent mass concentration of the PM10 emitted from burning the coals is higher than that emitted from burning the briquettes. The ICP-MS analysis indicates that the contents of total REEs in the coal-burning PM10 are lower than those in the briquette-burning PM10. In addition, the contents of the light rare earth elements (LREEs) are higher than those of the heavy rare earth elements (HREEs) in the PM10 emitted from burning the coals and briquettes, demonstrating that the REEs in both the coal-burning and briquette-burning PM10 are dominated by LREEs. The higher contents of total REEs and LREEs in the coal-burning PM10 are associated with the higher ash yields and lower volatile contents in the raw coals. A comparative analysis indicates that the La/Sm ratios in the PM10 emitted from burning the coals and briquettes, being lower than 2, are lower than those in the particles from gasoline-powered vehicle emission.


Assuntos
Poluentes Atmosféricos/análise , Carvão Mineral/análise , China , Monitoramento Ambiental , Material Particulado/análise , Solo
4.
J Environ Sci (China) ; 76: 339-348, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528025

RESUMO

Traffic vehicles, many of which are powered by port fuel injection (PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600 nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles, which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.


Assuntos
Condução de Veículo , Gasolina/análise , Material Particulado/análise , Material Particulado/química , Emissões de Veículos/análise , Poluição do Ar , Tamanho da Partícula
5.
J Environ Sci (China) ; 71: 45-55, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195689

RESUMO

Coal combustion in the domestic stoves, which is common in most parts of the Chinese countryside, can release harmful substances into the air and cause health issues. In this study, particles emitted from laboratory stove combustion of the raw powder coals were analyzed for morphologies and chemical compositions by using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX). The coal burning-derived individual particles were classified into two groups: carbonaceous particles (including soot aggregates and organic particles) and non-carbonaceous particles (including sulfate, mineral and metal particles). The non-carbonaceous particles, which constituted a majority of the coal burning-derived emissions, were subdivided into Si-rich, S-rich, K-rich, Ca-rich, and Fe-rich particles according to the elemental compositions. The Si-rich, S-rich and K-rich particles are commonly observed in the coal burning emission. The proportions for particles of different types exhibit obvious coal-issue dependence. Burning of coal with high ash yield could emit more non-carbonaceous particles, and burning of coal with high sulfur content can emit more S-rich particles. By comparing the S-rich particles from this coal burning experiment with those in the atmosphere, we draw a conclusion that some S-rich particles in the atmosphere in China could be mainly sourced from coal combustion.


Assuntos
Poluentes Atmosféricos/análise , Carvão Mineral/análise , Culinária/instrumentação , Monitoramento Ambiental , Atmosfera/química , China , Culinária/estatística & dados numéricos
6.
Am J Bot ; 104(1): 127-149, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28062406

RESUMO

PREMISE OF THE STUDY: Noeggerathiales are an extinct group of heterosporous shrubs and trees that were widespread and diverse during the Pennsylvanian-Permian Epochs (323-252 Ma) but are of controversial taxonomic affinity. Groups proposed as close relatives include leptosporangiate ferns, sphenopsids, progymnosperms, or the extant eusporangiate fern Tmesipteris. Previously identified noeggerathialeans lacked anatomical preservation, limiting taxonomic comparisons to their external morphology and spore structure. We here document from the upper Permian of China the first anatomically preserved noeggerathialeans, which enhance the perceived distinctiveness of the group and better indicate its systematic affinity. METHODS: We describe in detail the newly discovered, anatomically preserved heterosporous strobilus Dorsalistachya quadrisegmentorum, gen. et sp. nov., and redescribe its suspected foliar correlate, the pinnate leaf Plagiozamites oblongifolius. KEY RESULTS: Plagiozamites possesses an omega (Ω)-shaped vascular trace and prominent cortical secretory cavities-a distinctive anatomical organization that is echoed in the newly discovered strobili. Dorsalistachya strobili bear highly dissected sporophylls alternately in two vertical rows, suggesting that they are homologs of leaf pinnae. If so, the "strobilus" is strictly a pseudostrobilus and consists of sporangium-bearing units that are one hierarchical level below true sporophylls. The "sporophylls" bear four microsporangia on the lower (abaxial) surface, occasionally interspersed with short longitudinal rows of megasporangia. A single functional megaspore develops within each winged megasporangium, suggesting adaptation for dispersal as a single unit. CONCLUSIONS: Dorsalistachya presents a unique combination of reproductive features that amply justifies establishment of a new family, Dorsalistachyaceae. Noeggerathiales represent a distinct taxonomic Order of free-sporing plants that most resembles early-divergent eusporangiate ferns and the more derived among the extinct progymnosperms. By the early Permian, noeggerathialeans had attained levels of reproductive sophistication similar to the most derived among the Paleozoic sphenophytes and lycophytes, but their heterosporous life history may have contributed to their extinction during the Triassic climatic aridification.


Assuntos
Fósseis , Folhas de Planta/anatomia & histologia , Plantas/anatomia & histologia , Evolução Biológica , China , Geografia , Paleontologia/métodos , Estruturas Vegetais/anatomia & histologia , Plantas/classificação , Reprodução , Fatores de Tempo
7.
Environ Sci Technol ; 49(14): 8408-15, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26114602

RESUMO

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera , Pequim , Biomassa , Radioisótopos de Carbono/análise , China , Carvão Mineral/análise , Combustíveis Fósseis/análise , Estações do Ano , Fuligem/análise
8.
J Environ Sci (China) ; 26(1): 167-74, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24649703

RESUMO

The frequent haze days around the Chinese capital of Beijing in recent years have aroused great attention owing to the detrimental effects on visibility and public health. To discover the potential health effects of the haze, oxidative capacities of airborne particles collected in Beijing during haze and clear days were comparably assessed by a plasmid scission assay. Eleven water-soluble trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, V, Se, Tl, and Zn) in the size-segregated airborne particles were quantitatively analyzed by inductively coupled plasma mass spectrometry, and most of the water-soluble trace elements were found to mainly concentrate in the fine particle size of 0.56-1.0 microm. In comparison with clear days, the mass concentrations of 11 analyzed water-soluble trace elements remarkably increased during haze days, and the oxidative capacities determined by the plasmid scission assay were markedly elevated accordingly during the haze days under the same dosage of particles as for those during clear days. Water-soluble trace elements in airborne particles, such as Cu, V, and particularly Zn, were found to have significantly positive correlations with the plasmid DNA damage rates. Because Cu, V, and Zn have been considered as bioavailable elements, the evident increase of these elements during haze days may be greatly harmful to human health.


Assuntos
Material Particulado/química , China , Cidades , Dano ao DNA , Oxirredução , Tamanho da Partícula , Plasmídeos , Oligoelementos/análise
9.
Toxics ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668469

RESUMO

Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM2.5 (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM2.5 samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM2.5 ranged from 1.98% to 7.75% and demonstrated a clear dose-response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM2.5, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM2.5. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM2.5 were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM2.5 toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health.

10.
Sci Total Environ ; 912: 169308, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101632

RESUMO

Atmospheric microplastics (MPs) have received global attention across various sectors of society due to their potential negative impacts. This study aims to understand the physicochemical characteristics of MPs in inland and coastal megacities for raising awareness about the urgent need to reduce plastic pollution. Laser Direct Infrared Imaging (LDIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) techniques were employed to characterize atmospheric MPs in megacities (inland megacity Beijing and coastal megacity Shanghai) in China, focusing on their physicochemical characteristics, including compositional types, number concentration, morphology, size, possible sources, and potential health risks. The LDIR analysis identified sixteen different types of MPs present in the atmospheres of Beijing and Shanghai. The number concentration of atmospheric MPs in Beijing (3.0 items/m3) is 1.8 times that of Shanghai (1.7 items/m3). The study found that the variations in MP pollution between Beijing and Shanghai are influenced by the urban industrial structure and geographical location. Morphological analysis indicates that fragment MPs have the highest relative abundance in Beijing, while fibrous MPs dominate the atmosphere of Shanghai. Additionally, the study assessed the potential health risks of atmospheric MPs to urban residents. The results suggest that residents of Beijing face more severe health risks from atmospheric MPs compared to those in Shanghai. These findings underscore the urgency to address the issue of atmospheric MPs and provide crucial evidence for the formulation of relevant environmental and health policies.

11.
J Hazard Mater ; 469: 134024, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493631

RESUMO

Microplastic (MP) pollution is evolving into one of the most pressing environmental concerns worldwide. This study assessed the impact of economic activities on atmospheric MP pollution across 17 megacities in northern China, analyzing the correlation between the deposition flux of atmospheric MPs and variables such as city population, gross domestic product (GDP), and industrial structure. The results have shown that the MP pollution is obviously impacted by human activities related to increased GDP, population, as well as tertiary service sector, in which the MP pollution shows most close relationship with the GDP growth. Polypropylene, polyamide, polyurethane, and polyethylene were identified as the primary components of atmospheric MPs. The average particle size of MPs in atmospheric dustfall is 78.3 µm, and the frequency of MP particles increases as the particle size decreases. The findings highlight the complex relationship between socio-economic development and atmospheric MP accumulation, providing essential insights for the formulation of targeted emission reduction strategies.

12.
Sci Adv ; 10(5): eadi7284, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295161

RESUMO

The end-Permian mass extinction was the most severe ecological event during the Phanerozoic and has long been presumed contemporaneous across terrestrial and marine realms with global environmental deterioration triggered by the Siberian Traps Large Igneous Province. We present high-precision zircon U-Pb geochronology by the chemical abrasion-isotope dilution-thermal ionization mass spectrometry technique on tuffs from terrestrial to transitional coastal settings in Southwest China, which reveals a protracted collapse of the Cathaysian rainforest beginning after the onset of the end-Permian marine extinction. Integrated with high-resolution geochronology from coeval successions, our results suggest that the terrestrial extinction occurred diachronously with latitude, beginning at high latitudes during the late Changhsingian and progressing to the tropics by the early Induan, spanning a duration of nearly 1 million years. This latitudinal age gradient may have been related to variations in surface warming with more degraded environmental conditions at higher latitudes contributing to higher extinction rates.

13.
Sci Total Environ ; 885: 163651, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37088386

RESUMO

Understanding the physicochemical properties of atmospheric particles and the refined source apportionment become a vital foundation for targeted control of air pollution. The rapid development of the computer-controlled scanning electron microscope (CCSEM) provides a new era for atmospheric particle research by improving the efficiency of individual particle analysis. This study summarized the methodologies for CCSEM-based individual particle analysis and introduced the principle, characteristics, and development of CCSEM. The application scenarios of CCSEM in the field of air quality assessment, health assessment, and climate effects of atmospheric particles were reviewed. CCSEM has a great application prospect in the refined particle source apportionment, health effect assessment, and particle source spectrum database establishment. Much attention should be paid to the establishment of a well-developed methodology system for CCSEM, including particle identification, classification method and standardization, quantitative source appointment method establishment, and analysis timeliness enhancement.

14.
Environ Pollut ; 335: 122288, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544180

RESUMO

Dust storms are one of the largest sources of non-exhaust emissions in China, which can adversely affect air quality and human health during long-distance transportation. To study the influence of dust storms on aerosol particle composition, samples of fine aerosol (PM2.5) were collected before, during, and after the severe dust storm episodes in a coastal city of North China. Then the water-soluble inorganic ions in the filters were analyzed. The results showed that the chemical composition varied significantly in different sampling periods. Before the dust storm periods (Phase 1), the weather was characterized by high relative humidity. NO3- was the main water-soluble inorganic ion, accounting for about 1/3 of the total mass of PM2.5, which is very different from the situation a few years ago when sulfate was the dominant. The results indicated that the chemical composition of the atmosphere in China has changed significantly after the implementation of strict air pollution control measures. During the severe dust storm periods (within a few hours after the dust invasion, Phase 2), the proportion of Ca2+ in PM2.5 was high; the sulfate formation was limited due to adiabatic air mass affected by the cold front, and the sulfate content might be mainly from desert soil. However, a small amount of nitrate can be formed during their long-distance transportation. After the dust storm periods (Phase 3), dust plums and local polluted air mass mixed well. The proportion of secondary inorganic ions increased, and nitrate formation was still the main. The changes in the chemical composition from a few years ago during Phase 1 and the sharp changes in different water-soluble inorganic ions during different Phases should be carefully considered to evaluate their implications for air quality and human health.


Assuntos
Poluentes Atmosféricos , Nitratos , Humanos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Material Particulado/análise , Sulfatos/análise , Óxidos de Enxofre , Água/química
15.
ACS Omega ; 8(50): 47540-47559, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144058

RESUMO

The Qaidam Basin is a prominent oil and gas exploration and production base of NW China's Jurassic coal-bearing strata. Coal-bearing mudstones are important source rocks for unconventional reservoirs and can record valuable paleoenvironment and paleoclimate information. Here, geochemical analysis including total organic carbon (TOC), total sulfur, organic carbon isotopic composition, rock pyrolysis, X-ray diffraction, and major and trace elements were carried out on mudstone samples from the Middle Jurassic coal-bearing strata of the Dameigou section in the Qaidam Basin to reveal the paleoclimatic and paleoenvironmental conditions during the deposition of the strata and their controls on organic matter accumulation. Results show that the Middle Jurassic Dameigou and Shimengou formations include three significant stages based on their average TOC values of (3.32%, Stage I; 0.87%, Stage II; and 4.42%, Stage III) from the bottom to the top. The organic matter in mudstones in Stages I and II are mainly derived from terrestrial higher plants, while the organic matter has mixed sources of higher plant debris and lower aquatic organisms in Stage III. Paleoclimate parameters indicate that the mudstones in Stage I were deposited under humid and warm conditions, while the climate in Stage II changed to semiarid and warm conditions before turning dry and hot in Stage III. The varying paleoenvironmental characteristics under different paleoclimatic conditions have also been reconstructed. Our results suggest that the accumulation of organic matter in Stages I and II was primarily controlled by redox conditions, while paleoproductivity is the major controlling factor for organic matter accumulation in Stage III.

16.
ACS Omega ; 7(50): 46972-46982, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570180

RESUMO

The parameters of coal petrology and methane adsorption are significant to exploit coal and coalbed methane (CBM). Based on borehole core sampling, a new method using the P-wave velocity to predict coal maceral, coal face index, and Langmuir parameter of high-volatile bituminous coals was proposed. The results showed that the P-wave velocity correlated positively with coal skeletal density, apparent density, and ash yield with fitting coefficients (R 2) of 0.55, 0.57, and 0.57, respectively, but it negatively correlated with coal porosity and moisture content with R 2 of 0.56 and 0.60, respectively. Vitrinite, ranging from 14.8 to 82.7% with an average of 53.8%, positively correlated with coal porosity due to more micropores in vitrinite and thus negatively correlated with the density and P-wave velocity. Inertinite content was in the range of 5.4 to 27.4% with an average of 11.0%, which correlated negatively with the coal porosity and thus positively with the density and P-wave velocity for most of the samples. Furthermore, the P-wave velocity was weakly positively correlated with mineral content, and a negative correlation was found between the P-wave velocity and vitrinite/inertinite ratio (V/I), gelification index (GI), and Langmuir volume (V L). The porosity (Y 1), vitrinite content (Y 2), inertinite content (Y 3), and V L (Y 4) of coals could be predicted based on the equations as follows: Y 1 = 7842.4 e-0.003X , Y 2 = -0.0003X 2 + 1.0731X - 924.09, Y 3 = 0.0003X 2 - 1.2797X + 1405, and Y 4 = -0.04X + 101.24, where X is the P-wave velocity. Generally, P-wave velocity could be largely used to predict the variations of the coal maceral and methane adsorption capacity of high-volatile bituminous coals, providing a new and valuable approach for CBM exploration and gas prevention in coal mines.

17.
Sci Total Environ ; 803: 149980, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525764

RESUMO

Dust storm particles have been one of the important contributors to global aerosol loading, affecting human health and climate system. Beijing, a megapolitan city, experienced two severe dust storms in spring of 2015, with maximum hourly-mean PM10 mass concentrations exceeding 1000 µg/m3. The first dust storm (Dust 1) was from east area of Gobi Desert about 850 km in the north of Beijing and the second (Dust 2) was from west area of Gobi Desert about 1500 km in the northwest of Beijing. Morphologies and elemental compositions of dust particles were identified using high-resolution electron microscopy. The statistical analysis showed that the number fractions of mineral dust particles during the two dust storm episodes were 85.3% and 95.4%, respectively. Clay minerals were the most abundant among mineral particles, with a number fraction larger than 50%, followed by quartz particles (17.3% and 14.8%) and feldspar. Feldspar and carbonate particles accounted for 14.8% and 3.4% of mineral particles in Dust 1, and 9.9% and 13.6% in Dust 2, with the difference due to the different source areas. When the dust storms directly migrated to Beijing, the occurrence of S-containing mineral particles and the relative weight ratio of S in individual mineral particles were extremely low, indicating limited production of sulfate on the dust-storm particles in the atmosphere, regardless of the differences of source areas, migration paths, and mineralogical components. After the peaks of dust storms passed, the occurrence of S on the mineral particles were much higher, although the relative weight ratios of S in the mineral particles was still very small. This result suggests that most of the mineral particles underwent heterogeneous reactions, but the reaction rates were low.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Poeira/análise , Monitoramento Ambiental , Humanos , Minerais/análise , Tamanho da Partícula
18.
Sci Total Environ ; 802: 149630, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454137

RESUMO

Severe haze occurrence in the north of the North China Plain (NCP) is recognized as a consequence of the regional transport of pollutants initially from the south and then the rapid formation of secondary pollutants in the local air. However, the origin of pollutants causing haze in the southern NCP has not yet been elucidated even through careful data observation. Based on the contents of water-soluble inorganic ions in PM2.5 samples collected during two severe haze episodes in Zhengzhou, a mega city located on the southern edge of the NCP, we estimated the contributions of local primary emissions and secondary pollutants to haze occurrence. On average, Na+, K+, and Ca2+ mainly originated from anthropogenic sources, and their anthropogenic fractions had proportions of 97.5%, 93.9%, and 76.5% in their respective total mass. Anions Cl- and SO42- substantially originated from not only produced substantially via secondary formation but also from primary emissions, and their primary proportions in their respective total mass were 51.1% and 30.8%. In contrast, NH4+ and NO3- were dominated by secondary formation. The increase in PM2.5 was mainly caused by the formation of secondary inorganic (29.1%) and organic species (57.2%) and the primary anthropogenic emissions (12.5%). These results indicated that the haze at the southern edge of the NCP was mainly caused by pollutants in the local areas. Compared to the haze in the northern NCP, the haze in the southern NCP edge had a higher PM2.5 mass concentration and a higher proportion of secondary species, but a lower proportion of primary species, indicating the high heterogeneity of winter haze over the NCP.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Íons , Material Particulado/análise , Estações do Ano
19.
Sci Total Environ ; 838(Pt 1): 155989, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580670

RESUMO

Airborne microplastics (MPs) pollution is an environmental problem of increasing concern, due to the ubiquity, persistence and potential toxicity of plastics in the atmosphere. In recent years, most studies on MPs have focused on aquatic and sedimentary environments, but little research has been done on MPs in the urban atmosphere. In this study, a total of ten dustfall samples were collected in a transect from north to south across urban Beijing. The compositions, morphologies, and sizes of the MPs in these dustfall samples were determined by means of Laser Direct Infrared (LDIR) imaging and Field Emission Scanning Electron Microscopy (FESEM). The number concentrations of MPs in the Beijing dustfall samples show an average of 123.6 items/g. The MPs concentrations show different patterns in the central, southern, and northern zones of Beijing. The number concentration of MPs was the highest in the central zone (224.76 items/g), as compared with the southern zone (170.55 items/g), and the northern zone (24.42 items/g). The LDIR analysis revealed nine compositional types of MPs, including Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), Polyethylene Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and Polyvinylchloride (PVC), among which PP was overall dominant. The PP dominates the MPs in the central zone (76.3%), and the PA dominates the MPs in the southern zone (55.86%), while the northern zone had a diverse combination of MPs types. The morphological types of the individual MPs particle include fragments, pellets, and fibers, among which fragments are dominant (70.9%). FESEM images show the presence of aged MPs in the Beijing atmosphere, which could pose a yet unquantified health risk to Beijing's residents. The average size of the MPs in the Beijing samples is 66.62 µm. Our study revealed that the numbers of fibrous MPs increase with the decrease in size. This pollution therefore needs to be carefully monitored, and methods of decreasing the sources and mitigations developed.


Assuntos
Microplásticos , Poluentes Químicos da Água , Pequim , China , Monitoramento Ambiental , Plásticos , Polipropilenos/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 814: 152774, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986423

RESUMO

Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 µm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 µm) exceeded that caused by the coarse sized particles (4.7-10 µm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 µm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 µm to 1.1 µm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA