Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402489, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881269

RESUMO

Aqueous zinc metal batteries are a viable candidate for next-generation energy storage systems, but suffer from poor cycling efficiency of the Zn anode. Emerging approaches aim to regulate zinc plating behavior to suppress uncontrolled dendrites, while the stripping process is seldom considered. Herein, an oriented metal stripping strategy is demonstrated to stabilize the Zn anode by removing high-index facets for exposing the (002) plane through the addition of anionic additive sodium citrate (SC). Consequently, high-index facets that coordinate strongly with SC are preferentially stripped out due to a reduced stripping barrier, rendering stable (002) facet preponderant in epitaxial plating. After repeat stripping/plating, the ultra-high proportion of 93% for (002) and large-size grains of ≈100 µm (six times larger than before) can be obtained. Zn anode shows continuous 25 000 cycles with low overpotential at 100 mA cm-2 in symmetric cells and more than 70 h of stable operation even at an ultra-high depth of discharge of 92.3%. Moreover, an extremely long lifespan of 12 000 cycles at 10 A g-1 with a high capacity retention of 89% is achieved by the assembled Zn//I2 battery. This work provides a distinctive approach to improving the stripping process to design highly efficient zinc anodes for promising aqueous zinc metal batteries.

2.
J Am Chem Soc ; 145(11): 6144-6155, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36800212

RESUMO

Transformation of biomass and plastic wastes to value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. Electrocatalysis offers a sustainable approach; however, it remains a huge challenge to increase the current density and deliver market-demanded chemicals with high selectivity. Herein, we demonstrate an electrocatalytic strategy for upcycling glycerol (from biodiesel byproduct) to lactic acid and ethylene glycol (from polyethylene terephthalate waste) to glycolic acid, with both products being as valuable monomers for biodegradable polymer production. By using a nickel hydroxide-supported gold electrocatalyst (Au/Ni(OH)2), we achieve high selectivities of lactic acid and glycolic acid (77 and 91%, respectively) with high current densities at moderate potentials (317.7 mA/cm2 at 0.95 V vs RHE and 326.2 mA/cm2 at 1.15 V vs RHE, respectively). We reveal that glycerol and ethylene glycol can be enriched at the Au/Ni(OH)2 interface through their adjacent hydroxyl groups, substantially increasing local concentrations and thus high current densities. As a proof of concept, we employed a membrane-free flow electrolyzer for upcycling triglyceride and PET bottles, attaining 11.2 g of lactic acid coupled with 9.3 L of H2 and 13.7 g of glycolic acid coupled with 9.4 L of H2, respectively, revealing the potential of coproduction of valuable chemicals and H2 fuel from wastes in a sustainable fashion.

3.
Small ; 19(38): e2301874, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37196419

RESUMO

The practical application of aqueous zinc batteries are highly limited by unsatisfied Zn anodes for the unavoidable dendrite growth and side reactions. Crystal orientation engineering is an effective way to overcome these inherent drawbacks. However, how to achieve Zn plating with manipulated crystallographic orientation is still a great challenge. Herein, a uniform (002)-oriented Zn metal anode is reported based on a directional cation recognition and crystal assembly strategy. The activated layered double hydroxide (Act-LDH) exhibits favorable adsorption energy with Zn2+ and high lattice matching with Zn (002) plane, which can be served as directional recognition layer to anchor Zn2+ and regulate crystallographic orientation of Zn as well. As demonstration, Zn crystals with ultrahigh ratio of (002)/(100) plane of 15.7 are assembled parallelly on horizontal Act-LDH, in which high CE of 99.85% maintains over 18 000 cycles. The symmetric battery with (002)-oriented Zn shows stable plating/stripping process over 1650 and 420 h at 1 mA cm-2 /0.5 mA h cm-2 and 10 mA cm-2 /5 mA h cm-2 , respectively, which is 9 and 12 times higher than unoriented polycrystalline Zn. Moreover, as-assembled full battery displays high specific capacity of 120 mA h g-1 at 2 A g-1 over 1800 cycles.

4.
Angew Chem Int Ed Engl ; 62(15): e202219048, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807450

RESUMO

Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co3+ -oxo species are afforded for the GOR, including adsorbed hydroxyl on Co3+ ion (µ1 -OH-Co3+ ) and di-Co3+ -bridged lattice oxygen (µ2 -O-Co3+ ). Moreover, theoretical calculations unveil that µ1 -OH-Co3+ is responsible for oxygenation, while µ2 -O-Co3+ mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.

5.
J Am Chem Soc ; 144(17): 7720-7730, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35352954

RESUMO

Photoelectrocatalytic (PEC) glycerol oxidation offers a sustainable approach to produce dihydroxyacetone (DHA) as a valuable chemical, which can find use in cosmetic, pharmaceutical industries, etc. However, it still suffers from the low selectivity (≤60%) that substantially limits the application. Here, we report the PEC oxidation of glycerol to DHA with a selectivity of 75.4% over a heterogeneous photoanode of Bi2O3 nanoparticles on TiO2 nanorod arrays (Bi2O3/TiO2). The selectivity of DHA can be maintained at ∼65% under a relatively high conversion of glycerol (∼50%). The existing p-n junction between Bi2O3 and TiO2 promotes charge transfer and thus guarantees high photocurrent density. Experimental combined with theoretical studies reveal that Bi2O3 prefers to interact with the middle hydroxyl of glycerol that facilitates the selective oxidation of glycerol to DHA. Comprehensive reaction mechanism studies suggest that the reaction follows two parallel pathways, including electrophilic OH* (major) and lattice oxygen (minor) oxidations. Finally, we designed a self-powered PEC system, achieving a DHA productivity of 1.04 mg cm-2 h-1 with >70% selectivity and a H2 productivity of 0.32 mL cm-2 h-1. This work may shed light on the potential of PEC strategy for biomass valorization toward value-added products via PEC anode surface engineering.


Assuntos
Di-Hidroxiacetona , Glicerol , Adsorção , Catálise , Di-Hidroxiacetona/metabolismo , Glicerol/metabolismo , Radical Hidroxila , Oxirredução
6.
Small ; 17(28): e2100722, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117707

RESUMO

Aqueous zinc metal batteries (AZMBs) have drawn great attention due to the high theoretical capacity, low redox potential, and abundance reserves. However, the practical application of rechargeable AZMBs are hindered by the poor reversibility of Zn metal anode, owing to easy dendrite growth and serious side reactions. Herein, the preparation of heterogeneous interfacial film with highly dispersed and confined zinc salt in a 2D channel by coassembling polyamide 6, zinc trifluoromethanesulfonate, and layered double hydroxides, which significantly suppresses the dendrite formation, H2 evolution reaction as well as O2 corrosion is reported. The as-developed Zn anodes exhibit a long cycling life up to 1450 h with low reversible deposition potential. Moreover, the assembled Zn||Mn battery delivers a high initial capacity of 321 mAh g-1 and a low capacity decay of ≈0.05% per cycle after 590 cycles, which is promising for high-performance AZMBs. A fluorescent film to realize the in situ observation of the Zn anode during cycling, which provides a new chance for visual observation of the working state of the Zn interface, is also assembled.

7.
Angew Chem Int Ed Engl ; 60(13): 7382-7388, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33319448

RESUMO

The development of efficient electrocatalysts for the CO2 reduction reaction (CO2 RR) remains a challenge. Demonstrated here is a NiSn atomic-pair electrocatalyst (NiSn-APC) on a hierarchical integrated electrode, which exhibits a synergistic effect in simultaneously promoting the activity and selectivity of the CO2 RR to formate. The NiSn atomic pair consists of adjacent Ni and Sn, each coordinated with four nitrogen atoms (N4 -Ni-Sn-N4 ). The as-prepared NiSn-APC displays exceptional activity for the CO2 RR to formate with a turnover frequency of 4752 h-1 , a formate productivity of 36.7 mol h-1 gSn -1 and an utilization degree of active sites (57.9 %), which are superior to previously reported single-atomic catalysts. Both experimental data and density-functional theory calculations verify the electron redistribution of Sn imposed by adjacent Ni, which reduces the energy barrier of the *OCHO intermediate and makes this potential-determining step thermodynamically spontaneous. This synergistic catalysis provides a successful paradigm for rational design and preparation of atomic-pair electrocatalysts with enhanced performance.

8.
Angew Chem Int Ed Engl ; 58(12): 3962-3966, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30682234

RESUMO

The development of safe lithium-metal anodes is crucial for the next-generation rechargeable batteries. To stabilize Li metal anodes, pre-planting Li nucleation seeds on lithiophilic substrates is an efficient strategy to regulate initial nucleation process of Li metal. Now, activated ultrathin layered double hydroxide (U-LDHs) are reported as a promising lithiophilic 2D material to realize the uniform deposition of Li metal. The experimental studies and DFT calculations reveal that the active oxygen on U-LDHs provides abundant atomic-scale active sites for Li homogeneous nucleation and plating. Moreover, the lithiophilic properties of active oxygen is also related to its coordination environments. This work opens up an opportunity to more accurate regulation and understanding of Li nucleation from atomic-scale based on 2D ultrathin materials.

9.
Chemistry ; 23(34): 8142-8147, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28485855

RESUMO

Selective oxidation of alcohols to aldehydes plays an important role in perfumery, pharmaceuticals, and agrochemicals industry. Different from traditional catalysis or photocatalytic process, here we report an effective photoelectrochemical (PEC) approach for selective anaerobic oxidation of alcohols accompanied with H2 production by means of solar energy. By using TiO2 nanowires modified with graphitic carbon layer as photoanode, benzyl alcohol (BA) has been oxidized to benzaldehyde with high efficiency and selectivity (>99 %) in aqueous media at room temperature, superior to individual electrocatalytic or photocatalytic processes. Moreover, this PEC synthesis method can be effectively extended to the oxidation of several other aryl alcohols to their corresponding aldehydes under mild conditions. The electron spin resonance (ESR) results indicate the formation of intermediate active oxygen (O2.- ) on the photoanode, which further reacts with alcohols to produce final aldehyde compounds.

10.
Angew Chem Int Ed Engl ; 56(21): 5867-5871, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28429388

RESUMO

Layered double hydroxides (LDHs) with two-dimensional lamellar structures show excellent electrocatalytic properties. However, the catalytic activity of LDHs needs to be further improved as the large lateral size and thickness of the bulk material limit the number of exposed active sites. However, the development of efficient strategies to exfoliate bulk LDHs into stable monolayer LDH nanosheets with more exposed active sites is very challenging. On the other hand, the intrinsic activity of monolayer LDH nanosheets can be tuned by surface engineering. Herein, we have exfoliated bulk CoFe LDHs into ultrathin LDH nanosheets through Ar plasma etching, which also resulted in the formation of multiple vacancies (including O, Co, and Fe vacancies) in the ultrathin 2D nanosheets. Owing to their ultrathin 2D structure, the LDH nanosheets expose a greater number of active sites, and the multiple vacancies significantly improve the intrinsic activity in the oxygen evolution reaction (OER).

11.
Small ; 11(29): 3530-8, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25788400

RESUMO

A sophisticated hierarchical nanoarray consisting of a conducting polymer (polypyrrole, PPy) core and layered double hydroxide (LDH) shell are synthesized via a facile two-step electrosynthesis method. The obtained PPy@LDH-based flexible all-solid-state supercapacitor meets the requirements of both high energy/power output and long-term endurance, which can be potentially used in highly-efficient and stable energy storage.

12.
J Ind Microbiol Biotechnol ; 41(7): 1099-108, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752562

RESUMO

Operation performances of phosphorus removal sludge with different electron acceptors in three parallel SBRs were firstly compared in the present study, and the effect of post-aeration on denitrifying phosphorus removal was also studied. Moreover, community dynamics of different phosphorus removal sludge was systematically investigated with high-throughput sequencing for the first time. TP removal rates for nitrate-, nitrite-, and oxygen-based phosphorus removal sludge were 84.8, 78.5, and 87.4 %, with an average effluent TP concentration of 0.758, 0.931, and 0.632 mg/l. The average specific phosphorus release and uptake rates were 20.3, 10.8, and 21.5, and 9.43, 8.68, and 10.8 mgP/(gVSS h), respectively. Moreover, electron utilization efficiency of denitrifying phosphorus removal sludge with nitrate as electron acceptor was higher than nitrite, with P/e(-) were 2.21 and 1.51 mol-P/mol-e(-), respectively. With the assistance of post-aeration for nitrate-based denitrifying phosphorus removal sludge, settling ability could be improved, with SVI decreased from 120 to 80 and 72 ml/g when post-aeration time was 0, 10, and 30 min, respectively. Moreover, further phosphorus removal could be achieved during post-aeration with increased aeration time. However, the anoxic phosphorus uptake was deteriorated, which was likely a result of shifted microbial community structure. Post-aeration of approximately 10 min was proposed for denitrifying phosphorus removal. Nitrate- and nitrite-based denitrifying phosphorus removal sludge exhibited similar community structure. More phosphorus accumulating organisms were enriched under anaerobic-aerobic conditions, while anaerobic-anoxic conditions were favorable for suppressing glycogen-accumulating organisms. Significant differences in pathogenic bacterial community profiles revealed in the current study indicated the potential public health hazards of non-aeration activated sludge system.


Assuntos
Reatores Biológicos , Elétrons , Fósforo/isolamento & purificação , Esgotos/microbiologia , Desnitrificação , Nitratos/metabolismo , Nitritos/metabolismo , Oxidantes/metabolismo , Oxigênio/metabolismo , Fósforo/metabolismo
13.
Environ Technol ; 35(21-24): 2692-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176303

RESUMO

An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.


Assuntos
Reatores Biológicos , Nitratos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Carbonato de Cálcio , Desnitrificação , Sulfatos/metabolismo , Enxofre
14.
ACS Appl Bio Mater ; 7(6): 3556-3567, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38777621

RESUMO

Skin tissue engineering (STE) is widely regarded as an effective approach for skin regeneration. Several synthetic biomaterials utilized for STE have demonstrated favorable fibrillar characteristics, facilitating the regeneration of skin tissue at the site of injury, yet they have exhibited a lack of in situ degradation. Various types of skin regenerative materials, such as hydrogels, nanofiber scaffolds, and 3D-printing composite scaffolds, have recently emerged for use in STE. Electrospun nanofiber scaffolds possess distinct advantages, such as their wide availability, similarity to natural structures, and notable tissue regenerative capabilities, which have garnered the attention of researchers. Hence, electrospun nanofiber scaffolds may serve as innovative biological materials possessing the necessary characteristics and potential for use in tissue engineering. Recent research has demonstrated the potential of electrospun nanofiber scaffolds to facilitate regeneration of skin tissues. Nevertheless, there is a need to enhance the rapid degradation and limited mechanical properties of electrospun nanofiber scaffolds in order to strengthen their effectiveness in soft tissue engineering applications in clinical settings. This Review centers on advanced research into electrospun nanofiber scaffolds, encompassing preparation methods, materials, fundamental research, and preclinical applications in the field of science, technology, and engineering. The existing challenges and prospects of electrospun nanofiber scaffolds in STE are also addressed.


Assuntos
Materiais Biocompatíveis , Nanofibras , Pele , Engenharia Tecidual , Alicerces Teciduais , Nanofibras/química , Alicerces Teciduais/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Animais , Tamanho da Partícula
15.
Fundam Res ; 4(1): 69-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933839

RESUMO

The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals; however, this strategy is limited by the competing oxygen evolution reactions and high energy consumption. Herein, we report a hierarchical CoNi layered double hydroxides (LDHs) electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural (HMF) and cathodic hydrogen evolution. The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites. In particular, a high faradaic efficiency (FE) at a high current density (99% at 100 mA cm-2) is achieved for HMF oxidation, and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH, which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields (95%) and FE (90%).

16.
Chemistry ; 19(13): 4100-8, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23424036

RESUMO

The combination of magnetic particles and layered double hydroxide (LDHs) materials leads to the formation of hierarchical composites that can take full advantages of each component; this is an effective approach for achieving multifunctional materials with intriguing properties. This Concept article summarizes several important strategies for the fabrication of magnetic-core/LDH-shell hierarchical nanocomposites, including direct coprecipitation, layer-by-layer assembly, and in situ growth methods. The obtained nanocomposites exhibit excellent performance as multifunctional materials for promising applications in targeted drug delivery, efficient separation, and catalysis. The fabrication and application of magnetic-core/LDH-shell nanocomposite materials represent a new direction in the development of LDH-based multifunctional materials, which will contribute to the progress of chemistry and material science.

17.
Adv Sci (Weinh) ; 10(8): e2206479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646523

RESUMO

Room temperature liquid NaK alloy is a promising candidate for high performance metal batteries, due to its dendrite-free property and high energy density. However, its practical application is hindered by the high surface tension of liquid NaK, which causes difficulties in maintaining a stable contact with a current collector. Here, the authors demonstrate the extraordinary stable confinement of NaK alloy at room temperature by constructing a super-wetting substrate, which is based on highly dispersed cobalt-single-atom carbon nanoarrays. The developed liquid anode electrode prevented successfully the leakage of NaK alloy even in harsh stress (>5 MPa) or sharp shock conditions. The symmetric cells achieved ultra-long reversible plating/stripping cycling life in both Na-ion (>1010 hrs) and K-ion electrolytes (>4000 hrs) at 10 mA cm-2 /10 mAh cm-2 . Upon fitting with Na3 V2 (PO4 )3 , the NaK assembled full battery provided high energy density (332.6 kWh kg-1 ) and power density (11.05 kW kg-1 ) with excellent stability after >21600 cycles, which is the best value reported so far. The prepared pouch cell was able to drive a four-axis aircraft, demonstrating a great prospect in practical application. This work offers a new approach in the preparation of advanced dendrite-free liquid metal anodes with promising applications in electrochemical energy storage.

18.
STAR Protoc ; 4(2): 102311, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37182204

RESUMO

Photoelectrocatalytic (PEC) strategy has emerged as a promising approach to drive organic reactions under mild conditions. Here, we present a protocol for PEC oxidative coupling of aromatic amines to produce aromatic azo compounds over a porous BiVO4 nanoarray (BiVO4-NA) photoanode. We describe the fabrication of BiVO4-NA photoanode and the detailed steps for the PEC oxidative coupling reaction, including key performance data of the BiVO4-NA photoanode for synthesizing azobenzene from aniline. For complete details on the use and execution of this protocol, please refer to Luo et al. (2022).1.

19.
ACS Appl Mater Interfaces ; 15(19): 23265-23275, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146267

RESUMO

Electrocatalytic oxidation of glycerol (GLY; from a biodiesel byproduct) to lactic acid (LA; the key monomers for polylactic acid; PLA) is considered a sustainable approach for biomass waste upcycling and is coupled with cathodic hydrogen (H2) production. However, current research still suffer from issues of low current density and low LA selectivity. Herein, we reported a photoassisted electrocatalytic strategy to achieve the selective oxidation of GLY to LA over a gold nanowire (Au NW) catalyst, attaining a high current density of 387 mA cm-2 at 0.95 V vs RHE, together with a high LA selectivity of 80%, outperforming most of the reported works in the literature. We reveal that the light-assistance strategy plays a dual role, which can both accelerate the reaction rate through the photothermal effect and also promote the adsorption of the middle hydroxyl of GLY over Au NWs to realize the selective oxidation of GLY to LA. As a proof-of-concept, we realized the direct conversion of crude GLY that was extracted from cooking oil to attain LA and coupled it with H2 production using the developed photoassisted electrooxidation process, revealing the potential of this strategy in practical applications.

20.
ACS Appl Mater Interfaces ; 15(10): 13176-13185, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868558

RESUMO

Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm-2 h-1) with higher Faradaic efficiency (FE) (85 vs 69%) at -0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA