Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(37): e2003290, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794645

RESUMO

Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed. These dendrimers bear multiple In3+ radionuclides at their terminals as SPECT reporters. By replacing the macrocyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid cage with the smaller 1,4,7-triazacyclononane-1,4,7-triacetic acid scaffold as the In3+ chelator, the corresponding dendrimer exhibits neutral In3+ -complex terminals in place of negatively charged In3+ -complex terminals. This negative-to-neutral surface charge alteration completely reverses the zeta-potential of the nanosystems from negative to positive. As a consequence, the resulting SPECT nanoprobe generates a highly sought-after biodistribution profile accompanied by a drastically reduced uptake in liver, leading to significantly improved tumor imaging. This finding contrasts with current literature reporting that positively charged nanoparticles have preferential accumulation in the liver. As such, this study provides new perspectives for improving the biodistribution of positively charged nanosystems for biomedical applications.


Assuntos
Dendrímeros , Nanopartículas , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
2.
Acta Pharm Sin B ; 13(9): 3945-3955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719367

RESUMO

Immunotherapy has revolutionized the landscape of cancer treatment. However, single immunotherapy only works well in a small subset of patients. Combined immunotherapy with antitumor synergism holds considerable potential to boost the therapeutic outcome. Nevertheless, the synergistic, additive or antagonistic antitumor effects of combined immunotherapies have been rarely explored. Herein, we established a novel combined cancer treatment modality by synergizing p21-activated kinase 4 (PAK4) silencing with immunogenic phototherapy in engineered extracellular vesicles (EVs) that were fabricated by coating M1 macrophage-derived EVs on the surface of the nano-complex cores assembled with siRNA against PAK4 and a photoactivatable polyethyleneimine. The engineered EVs induced potent PAK4 silencing and robust immunogenic phototherapy, thus contributing to effective antitumor effects in vitro and in vivo. Moreover, the antitumor synergism of the combined treatment was quantitatively determined by the CompuSyn method. The combination index (CI) and isobologram results confirmed that there was an antitumor synergism for the combined treatment. Furthermore, the dose reduction index (DRI) showed favorable dose reduction, revealing lower toxicity and higher biocompatibility of the engineered EVs. Collectively, the study presents a synergistically potentiated cancer treatment modality by combining PAK4 silencing with immunogenic phototherapy in engineered EVs, which is promising for boosting the therapeutic outcome of cancer immunotherapy.

3.
Adv Sci (Weinh) ; 9(22): e2201135, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665496

RESUMO

Exosomes derived from natural killer (NK) cells (NEO) constitute promising antineoplastic nano-biologics because of their versatile functions in immune regulation. However, a significant augment of their immunomodulatory capability is an essential need to achieve clinically meaningful treatment outcomes. Light-activatable silencing NK-derived exosomes (LASNEO) are orchestrated by engineering the NEO with hydrophilic small interfering RNA (siRNA) and hydrophobic photosensitizer Ce6. Profiling of genes involved in apoptosis pathway with Western blot and RNA-seq in cells receiving NEO treatment reveals that NEO elicits effective NK cell-like cytotoxicity toward tumor cells. Meanwhile, reactive oxygen species (ROS) generation upon laser irradiation not only triggers substantial photodynamic therapy effect but also boosts M1 tumor-associated macrophages polarization and DC maturation in the tumor microenvironment (TME). In addition, ROS also accelerates the cellular entry and endosomal escape of siRNA in TME. Finally, siRNAs targeting PLK1 or PD-L1 induce robust gene silencing in cancer cells, and downregulation of PD-L1 restores the immunological surveillance of T cells in TME. Therefore, the proposed LASNEO exhibit excellent antitumor effects by conscripting multiple types of immune cells. Considering that its manufacture is quite simple and controllable, LASNEO show compelling potential for clinical translational application.


Assuntos
Exossomos , Neoplasias , Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Humanos , Células Matadoras Naturais , Neoplasias/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
4.
Adv Mater ; 34(35): e2204765, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35793475

RESUMO

Immunotherapy has delivered impressive outcomes in combating tumor malignancies. However, insufficient immune infiltration and poor immunogenicity within the tumor microenvironment (TME) greatly compromise patient response rates. Here, a photoactivatable silencing extracellular vesicle (PASEV) is developed for sensitized cancer immunotherapy. p21-Activated kinase 4 (PAK4) is a newly identified tumor-cell-intrinsic "guard" associated with immune exclusion. Small interfering RNA against PAK4 (siPAK4) is designed and assembled with a photoactivatable reactive-oxygen-species (ROS)-sensitive polymer to form the nanocomplex core, which is further camouflaged by extracellular vesicles from M1 macrophages. The PASEV not only serves as a vehicle for packaging, tumor accumulation, and ROS-responsive release of siPAK4 for potent PAK4 silencing, but also primes the TME through immunogenic phototherapy, thereby simultaneously boosting intratumoral infiltration and immune activation. The combined immunotherapy elicits robust anticancer immunity, thus showing great promise for fighting cancers. This work opens a new avenue to simultaneously boost intratumoral infiltration and immune activation for sensitized cancer immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/terapia , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio , Microambiente Tumoral , Quinases Ativadas por p21/genética
5.
Bioact Mater ; 9: 590-601, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34853819

RESUMO

CRISPR/Cas9-based gene editing has emerged as a powerful biotechnological tool, that relies on Cas9 protein and single guided RNA (sgRNA) to edit target DNA. However, the lack of safe and efficient delivery carrier is one of the crucial factors restricting its clinical transformation. Here, we report an ionizable lipid nanoparticle (iLP181, pKa = 6.43) based on iLY1809 lipid enabling robust gene editing in vitro and in vivo. The iLP181 effectively encapsulate psgPLK1, the best-performing plasmid expressing for both Cas9 protein and sgRNA targeting Polo-like kinase 1 (PLK1). The iLP181/psgPLK1 nanoformulation showed uniformity in size, regular nanostructure and nearly neutral zeta potential at pH 7.4. The nanoformulation effectively triggered editing of PLK1 gene with more than 30% efficiency in HepG2-Luc cells. iLP181/psgPLK1 significantly accumulated in the tumor for more than 5 days after a single intravenous injection. In addition, it also achieved excellent tumor growth suppression compared to other nucleic acid modalities such as siRNA, without inducing adverse effects to the main organs including the liver and kidneys. This study not only provides a clinically-applicable lipid nanocarrier for delivering CRISPR/Cas system (even other bioactive molecules), but also constitutes a potential cancer treatment regimen base on DNA editing of oncogenes.

6.
Plant Sci ; 274: 294-308, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080616

RESUMO

As a photoreceptor specifically for UV-B light, UVR8 gene plays an important role in the photomorphogenesis and developmental growth of plants. In this research, we isolated the UVR8 gene from birch, named BpUVR8 (AHY02156). BpUVR8 overexpression rescued the uvr8 mutant phenotype using functional complementation assay of BpUVR8 in Arabidopsis uvr8 mutants, which showed that the function of UVR8 is conserved between Arabidopsis and birch. The expression analysis of BpUVR8 indicated that this gene is expressed in various tissues, but its expression levels in leaves are higher than in other organs. Moreover, abiotic stress factors, such as UV-B, salinity, and abscisic acid (ABA) can induce the expression of BpUVR8 gene. Interestingly, the analysis of promoter activity indicated that BpUVR8 promoter not only has the promoting activity but can also respond to the induction of abiotic stress and ABA signal. So, we analyzed its function in ABA response via transgenic UVR8 overexpression in Arabidopsis. The BpUVR8 enhances the susceptibility to ABA, which indicates that BpUVR8 is regulated by ABA and can inhibit seed germination. The root length of 20-day-old 35S::BpUVR8/WT transgenic plants was 18% reduced as compared to the wild-type under the ABA treatment. The membrane of the BpUVR8-overexpressing in Arabidopsis thaliana was the most damaged after ABA treatment and 35S::BpUVR8/WT transgenic plant was more sensitive to ABA than the wild type. These results showed that BpUVR8 is a positive regulator in the ABA signal transduction pathway. In the presence of low dose of UV-B, the sensitivity of wild-type and 35S::BpUVR8/WT plants to ABA was reduced. Moreover, BpUVR8 regulates the expression of a subset of ABA-responsive genes, both in Arabidopsis and Betula platyphylla, under the ABA treatment. Our data provide evidence that BpUVR8 is a positive regulator in the UV-B-induced photomorphogenesis in plants. Moreover, we propose from this research that BpUVR8 might have an important role in integrating plant growth and ABA signaling pathway.


Assuntos
Ácido Abscísico/metabolismo , Betula/genética , Fotorreceptores de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Betula/crescimento & desenvolvimento , Betula/fisiologia , Betula/efeitos da radiação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotorreceptores de Plantas/genética , Plantas Geneticamente Modificadas , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA