Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(11): e22579, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183323

RESUMO

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. Resolvin D1 (RvD1) is derived from ω-3 polyunsaturated fatty acids and is involved in the resolution phase of chronic inflammatory diseases. The aim of this study was to decipher the protective role of RvD1 via formyl peptide receptor 2 (FPR2) receptor signaling in attenuating abdominal aortic aneurysms (AAA). The elastase-treatment model of AAA in C57BL/6 (WT) mice and human AAA tissue was used to confirm our hypotheses. Elastase-treated FPR2-/- mice had a significant increase in aortic diameter, proinflammatory cytokine production, immune cell infiltration (macrophages and neutrophils), elastic fiber disruption, and decrease in smooth muscle cell α-actin expression compared to elastase-treated WT mice. RvD1 treatment attenuated AAA formation, aortic inflammation, and vascular remodeling in WT mice, but not in FPR2-/- mice. Importantly, human AAA tissue demonstrated significantly decreased FPR2 mRNA expression compared to non-aneurysm human aortas. Mechanistically, RvD1/FPR2 signaling mitigated p47phox phosphorylation and prevented hallmarks of ferroptosis, such as lipid peroxidation and Nrf2 translocation, thereby attenuating HMGB1 secretion. Collectively, this study demonstrates RvD1-mediated immunomodulation of FPR2 signaling on macrophages to mitigate ferroptosis and HMGB1 release, leading to resolution of aortic inflammation and remodeling during AAA pathogenesis.


Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Proteína HMGB1 , Actinas/metabolismo , Animais , Aneurisma da Aorta Abdominal/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Elastase Pancreática/metabolismo , RNA Mensageiro/metabolismo , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas , Remodelação Vascular
2.
FASEB J ; 35(8): e21780, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34320253

RESUMO

The specialized pro-resolving lipid mediator maresin 1 (MaR1) is involved in the resolution phase of tissue inflammation. It was hypothesized that exogenous administration of MaR1 would attenuate abdominal aortic aneurysm (AAA) growth in a cytokine-dependent manner via LGR6 receptor signaling and macrophage-dependent efferocytosis of smooth muscle cells (SMCs). AAAs were induced in C57BL/6 wild-type (WT) mice and smooth muscle cell specific TGF-ß2 receptor knockout (SMC-TGFßr2-/- ) mice using a topical elastase AAA model. MaR1 treatment significantly attenuated AAA growth as well as increased aortic SMC α-actin and TGF-ß2 expressions in WT mice, but not SMC-TGFßr2-/- mice, compared to vehicle-treated mice. In vivo inhibition of LGR6 receptors obliterated MaR1-dependent protection in AAA formation and SMC α-actin expression. Furthermore, MaR1 upregulated macrophage-dependent efferocytosis of apoptotic SMCs in murine aortic tissue during AAA formation. In vitro studies demonstrate that MaR1-LGR6 interaction upregulates TGF-ß2 expression and decreases MMP2 activity during crosstalk of macrophage-apoptotic SMCs. In summary, these results demonstrate that MaR1 activates LGR6 receptors to upregulate macrophage-dependent efferocytosis, increases TGF-ß expression, preserves aortic wall remodeling and attenuate AAA formation. Therefore, this study demonstrates the potential of MaR1-LGR6-mediated mitigation of vascular remodeling through increased efferocytosis of apoptotic SMCs via TGF-ß2 to attenuate AAA formation.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Ácidos Docosa-Hexaenoicos/farmacologia , Miócitos de Músculo Liso/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
3.
FASEB J ; 34(7): 9787-9801, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506673

RESUMO

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. This study investigates the role of TRPV4 channels, which are transmembrane calcium channels that can regulate vascular tone, in modulating AAA formation. The elastase-treatment model of AAA in C57BL6 (WT) mice and Angiotensin II treatment model in ApoE-/- mice were used to confirm our hypotheses. The administration of a specific TRPV4 antagonist, GSK2193874, in elastase-treated WT mice and in AngII-treated ApoE-/- mice caused a significant attenuation of aortic diameter, decrease in pro-inflammatory cytokines (IL-1ß, IL-6, IL-17, MCP-1, MIP-1α, MIP-2, RANTES, and TNF-α), inflammatory cell infiltration (CD3 + T cells, macrophages, and neutrophils), elastic fiber disruption, and an increase in smooth muscle cell α-actin expression compared to untreated mice. Similarly, elastase-treated TRPV4-/- mice had a significant decrease in AAA formation, aortic inflammation, and vascular remodeling compared to elastase-treated WT mice on Day 14. In vitro studies demonstrated that the inhibition of TRPV4 channels mitigates aortic smooth muscle cell-dependent inflammatory cytokine production as well as decreases neutrophil transmigration through aortic endothelial cells. Therefore, our results suggest that TRPV4 antagonism can attenuate aortic inflammation and remodeling via decreased smooth muscle cell activation and neutrophil transendothelial migration during AAA formation.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Piperidinas/farmacologia , Quinolinas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Elastase Pancreática/metabolismo
4.
Biotechnol Bioeng ; 118(1): 186-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910455

RESUMO

Cell lines used in bioproduction are routinely engineered to improve their production efficiency. Numerous strategies, such as random mutagenesis, RNA interference screens, and transcriptome analyses have been employed to identify effective engineering targets. A genome-wide small interfering RNA screen previously identified the CASP8AP2 gene as a potential engineering target for improved expression of recombinant protein in the HEK293 cell line. Here, we validate the CASP8AP2 gene as an engineering target in HEK293 cells by knocking it out using CRISPR/Cas9 genome editing and assessing the effect of its knockout on recombinant protein expression, cell growth, cell viability, and overall gene expression. HEK293 cells lacking CASP8AP2 showed a seven-fold increase in specific expression of recombinant luciferase and a 2.5-fold increase in specific expression of recombinant SEAP, without significantly affecting cell growth and viability. Transcriptome analysis revealed that the deregulation of the cell cycle, specifically the upregulation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, contributed to the improvement in recombinant protein expression in CASP8AP2 deficient cells. The results validate the CASP8AP2 gene is a viable engineering target for improved recombinant protein expression in the HEK293 cell line.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Proteínas de Ligação ao Cálcio/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação para Cima , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
J Surg Res ; 268: 221-231, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371281

RESUMO

BACKGROUND: Thoracic aortic aneurysms (TAA) are a progressive disease characterized by inflammation, smooth muscle cell activation and matrix degradation. We hypothesized that mesenchymal stem cells (MSCs) can immunomodulate vascular inflammation and remodeling via altered microRNA (miRNAs) expression profile to attenuate TAA formation. MATERIALS AND METHODS: C57BL/6 mice underwent topical elastase application to form descending TAAs. Mice were also treated with MSCs on days 1 and 5 and aortas were analyzed on day 14 for aortic diameter. Cytokine array was performed in aortic tissue and total RNA was tagged and hybridized for miRNAs microarray analysis. Immunohistochemistry was performed for elastin degradation and leukocyte infiltration. RESULTS: Treatment with MSCs significantly attenuated aortic diameter and TAA formation compared to untreated mice. MSC administration also attenuated T-cell, neutrophil and macrophage infiltration and prevented elastic degradation to mitigate vascular remodeling. MSC treatment also attenuated aortic inflammation by decreasing proinflammatory cytokines (CXCL13, IL-27, CXCL12 and RANTES) and upregulating anti-inflammatory interleukin-10 expression in aortic tissue of elastase-treated mice. TAA formation demonstrated activation of specific miRNAs that are associated with aortic inflammation and vascular remodeling. Our results also demonstrated that MSCs modulate a different set of miRNAs that are associated with decrease leukocyte infiltration and vascular inflammation to attenuate the aortic diameter and TAA formation. CONCLUSIONS: These results indicate that MSCs immunomodulate specific miRNAs that are associated with modulating hallmarks of aortic inflammation and vascular remodeling of aortic aneurysms. Targeted therapies designed using MSCs and miRNAs have the potential to regulate the growth and development of TAAs.


Assuntos
Aneurisma da Aorta Torácica , Células-Tronco Mesenquimais , MicroRNAs , Animais , Aneurisma da Aorta Torácica/terapia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L304-L313, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31800262

RESUMO

Primary graft dysfunction after lung transplantation, a consequence of ischemia-reperfusion injury (IRI), is a major cause of morbidity and mortality. IRI involves acute inflammation and innate immune cell activation, leading to rapid infiltration of neutrophils. Formyl peptide receptor 1 (FPR1) expressed by phagocytic leukocytes plays an important role in neutrophil function. The cell surface expression of FPR1 is rapidly and robustly upregulated on neutrophils in response to inflammatory stimuli. Thus, we hypothesized that use of [99mTc]cFLFLF, a selective FPR1 peptide ligand, would permit in vivo neutrophil labeling and noninvasive imaging of IRI using single-photon emission computed tomography (SPECT). A murine model of left lung IRI was utilized. Lung function, neutrophil infiltration, and SPECT imaging were assessed after 1 h of ischemia and 2, 12, or 24 h of reperfusion. [99mTc]cFLFLF was injected 2 h before SPECT. Signal intensity by SPECT and total probe uptake by gamma counts were 3.9- and 2.3-fold higher, respectively, in left lungs after ischemia and 2 h of reperfusion versus sham. These values significantly decreased with longer reperfusion times, correlating with resolution of IRI as shown by improved lung function and decreased neutrophil infiltration. SPECT results were confirmed using Cy7-cFLFLF-based fluorescence imaging of lungs. Immunofluorescence microscopy confirmed cFLFLF binding primarily to activated neutrophils. These results demonstrate that [99mTc]cFLFLF SPECT enables noninvasive detection of lung IRI and permits monitoring of resolution of injury over time. Clinical application of [99mTc]cFLFLF SPECT may permit diagnosis of lung IRI for timely intervention to improve outcomes after transplantation.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/patologia , Oligopeptídeos/química , Receptores de Formil Peptídeo/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Imagem Óptica , Distribuição Tecidual
7.
FASEB J ; 33(10): 11396-11410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31311317

RESUMO

Recent recognition that TGF-ß signaling disruption is involved in the development of aortic aneurysms has led to renewed investigations into the role of TGF-ß biology in the aortic wall. We previously found that the type I receptor of TGF-ß (TGFBR2) receptor contributes to formation of ascending aortic aneurysms and dissections (AADs) induced by smooth muscle cell (SMC)-specific, postnatal deletion of Tgfbr1 (Tgfbr1iko). Here, we aimed to decipher the mechanistic signaling pathway underlying the pathogenic effects of TGFBR2 in this context. Gene expression profiling demonstrated that Tgfbr1iko triggers an acute inflammatory response in developing AADs, and Tgfbr1iko SMCs express an inflammatory phenotype in culture. Comparative proteomics profiling and mass spectrometry revealed that Tgfbr1iko SMCs respond to TGF-ß1 stimulation via robust up-regulation of cyclophilin A (CypA). This up-regulation is abrogated by inhibition of TGFBR2 kinase activity, small interfering RNA silencing of Tgfbr2 expression, or inhibition of SMAD3 activation. In mice, Tgfbr1iko rapidly promotes CypA production in SMCs of developing AADs, whereas treatment with a CypA inhibitor attenuates aortic dilation by 56% (P = 0.003) and ameliorates aneurysmal degeneration (P = 0.016). These protective effects are associated with reduced aneurysm-promoting inflammation. Collectively, these results suggest a novel mechanism, wherein loss of type I receptor of TGF-ß triggers promiscuous, proinflammatory TGFBR2 signaling in SMCs, thereby promoting AAD formation.-Zhou, G., Liao, M., Wang, F., Qi, X., Yang, P., Berceli, S. A., Sharma, A. K., Upchurch, G. R., Jr., Jiang, Z. Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Ciclofilina A/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Animais , Células Cultivadas , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/fisiologia
8.
J Surg Res ; 251: 239-247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32172010

RESUMO

BACKGROUND: Our previous studies showed that neutrophil infiltration and activation plays an important role in the pathogenesis of abdominal aortic aneurysms (AAA). However, there is a lack of noninvasive, inflammatory cell-specific molecular imaging methods to provide early diagnosis of AAA formation. Formyl peptide receptor 1 (FPR1) is rapidly upregulated on neutrophils during inflammation. Therefore, it is hypothesized that the use of cinnamoyl-F-(D)L-F-(D)L-F-K (cFLFLF), a PEGylated peptide ligand that binds FPR1 on activated neutrophils, would permit accurate and noninvasive diagnosis of AAA via single-photon emission computed tomography (SPECT) imaging. MATERIALS AND METHODS: Male C57BL/6 (wild-type) mice were treated with topical elastase (0.4 U/mL type 1 porcine pancreatic elastase) or heat-inactivated elastase (control), and aortic diameter was measured by video micrometry. Comparative histology was performed on Day 14 to assess neutrophil infiltration in aortic tissue. We performed near-infrared fluorescence imaging using c-FLFLF-Cy7 probe on Days 7 and 14 postelastase treatment and measured fluorescence intensity ex vivo in excised aortic tissue. A separate group of animals were injected with 99mTc-c-FLFLF 2 h before SPECT imaging on Day 14 using a SPECT/computed tomography/positron emission tomography trimodal scanner. Coexpression of neutrophils with c-FLFLF was also performed on aortic tissue by immunostaining on Day 14. RESULTS: Aortic diameter was significantly increased in the elastase group compared with controls on Days 7 and 14. Simultaneously, a marked increase in neutrophil infiltration and elastin degradation as well as decrease in smooth muscle integrity were observed in aortic tissue after elastase treatment compared with controls. Moreover, a significant increase in fluorescence intensity of c-FLFLF-Cy7 imaging probe was also observed in elastase-treated mice on Day 7 (approximately twofold increase) and Day 14 (approximately 2.5-fold increase) compared with respective controls. SPECT imaging demonstrated a multifold increase in signal intensity for 99mTc-cFLFLF radiolabel probe in mice with AAA compared with controls on Day 14. Immunostaining of aortic tissue with c-FLFLF-Cy5 demonstrated a marked increase in coexpression with neutrophils in AAA compared with controls. CONCLUSIONS: cFLFLF, a novel FPR1 ligand, enables quantifiable, noninvasive diagnosis and progression of AAAs. Clinical application of this inflammatory, cell-specific molecular probe using SPECT imaging may permit early diagnosis of AAA formation, enabling targeted therapeutic interventions and preventing impending aortic rupture.


Assuntos
Aneurisma Aórtico/diagnóstico por imagem , Infiltração de Neutrófilos , Receptores de Formil Peptídeo/metabolismo , Tecnécio/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Imagem Óptica , Compostos de Organotecnécio , Receptores de Formil Peptídeo/agonistas , Tecnécio/química
9.
J Surg Res ; 247: 387-396, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31699539

RESUMO

BACKGROUND: Male gender is a well-established risk factor for abdominal aortic aneurysm (AAA), whereas estrogen is hypothesized to play a protective role. Although rupture rates are higher in women, these reasons remain unknown. In the present study, we sought to determine if female mice are protected from AAA rupture. MATERIALS AND METHODS: Apolipoprotein E-deficient male and female mice (aged 7 wk; n = 25 per group) were infused with angiotensin II (AngII; 2000 ng/kg/min) plus ß-aminopropionitrile (BAPN) in the drinking water for 28 d to test the effects of gender on AAA rupture. Separately, a second group of male apolipoprotein E-deficient mice underwent AngII infusion + BAPN while being fed high-fat phytoestrogen free or a high-fat phytoestrogen diet to assess effects of phytoestrogens on rupture. In a third group, female mice either underwent oophorectomy or sham operation 4 wk before infusion of AngII and BAPN to further test the effects of female hormones on AA rupture. Surviving mice abdominal aorta were collected for histology, cytokine array, and gelatin zymography on postoperative day 28. RESULTS: Female mice had decreased AAA rupture rates (16% versus 46%; P = 0.029). Female mice expressed fewer elastin breaks (P = 0.0079) and decreased smooth muscle cell degradation (P = 0.0057). Multiple cytokines were also decreased in the female group. Gelatin zymography demonstrated significantly decreased pro-matrix metalloproteinase 2 in female mice (P = 0.001). Male mice fed a high dose phytoestrogen diet failed to decrease AAA rupture. Female mice undergoing oophorectomy did not have accelerated aortic rupture. CONCLUSIONS: These data are the first to attempt to tease out hormonal effects on AAA rupture and the possible role of gender in rupture.


Assuntos
Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/complicações , Ruptura Aórtica/epidemiologia , Administração Oral , Aminopropionitrilo/administração & dosagem , Aminopropionitrilo/toxicidade , Angiotensina II/administração & dosagem , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Ruptura Aórtica/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Fatores de Proteção , Fatores Sexuais
10.
Microb Cell Fact ; 19(1): 148, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703203

RESUMO

BACKGROUND: The expression of recombinant proteins triggers a stress response which downregulates key metabolic pathway genes leading to a decline in cellular health and feedback inhibition of both growth and protein expression. Instead of individually upregulating these downregulated genes or improving transcription rates by better vector design, an innovative strategy would be to block this stress response thereby ensuring a sustained level of protein expression. RESULTS: We postulated that the genes which are commonly up-regulated post induction may play the role of signalling messengers in mounting the cellular stress response. We identified those genes which have no known downstream regulatees and created knock outs which were then tested for GFP expression. Many of these knock outs showed significantly higher expression levels which was also sustained for longer periods. The highest product yield (Yp/x) was observed in a BW25113ΔcysJ knock out (Yp/x 0.57) and BW25113ΔelaA (Yp/x 0.49), whereas the Yp/x of the control W3110 strain was 0.08 and BW25113 was 0.16. Double knock out combinations were then created from the ten best performing single knock outs leading to a further enhancement in expression levels. Out of 45 double knock outs created, BW25113ΔelaAΔyhbC (Yp/x 0.7) and BW25113ΔcysJΔyhbC (Yp/x 0.64) showed the highest increase in product yield compared to the single gene mutant strains. We confirmed the improved performance of these knock outs by testing and obtaining higher levels of recombinant asparaginase expression, a system better suited for analysing sustained expression since it gets exported to the extracellular medium. CONCLUSION: Creating key knock outs to block the CSR and enhance expression is a radically different strategy that can be synergistically combined with traditional methods of improving protein yields thus helping in the design of superior host platforms for protein expression.


Assuntos
Asparaginase/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inativação de Genes/métodos , Asparaginase/genética , Proteínas de Escherichia coli/genética , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Proteínas de Fluorescência Verde/biossíntese , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/biossíntese , Transdução de Sinais/genética , Estresse Fisiológico , Regulação para Cima
11.
Arterioscler Thromb Vasc Biol ; 39(1): 73-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580567

RESUMO

Objective- The goal of this study was to determine the role of ZFP148 (zinc-finger protein 148) in aneurysm formation. Approach and Results- ZFP148 mRNA expression increased at day 3, 7, 14, 21, and 28 after during abdominal aortic aneurysm formation in C57BL/6 mice. Loss of ZFP148 conferred abdominal aortic aneurysm protection using ERTCre+ ZFP148 flx/flx mice. In a third set of experiments, smooth muscle-specific loss of ZFP148 alleles resulted in progressively greater protection using novel transgenic mice (MYH [myosin heavy chain 11] Cre+ flx/flx, flx/wt, and wt/wt). Elastin degradation, LGAL3, and neutrophil staining were significantly attenuated, while α-actin staining was increased in ZFP148 knockout mice. Results were verified in total cell ZFP148 and smooth muscle-specific knockout mice using an angiotensin II model. ZFP148 smooth muscle-specific conditional mice demonstrated increased proliferation and ZFP148 was shown to bind to the p21 promoter during abdominal aortic aneurysm formation. ZFP148 smooth muscle-specific conditional knockout mice also demonstrated decreased apoptosis as measured by decreased cleaved caspase-3 staining. ZFP148 bound smooth muscle marker genes via chromatin immunoprecipitation analysis mediated by NF-1 (neurofibromin 1) promote histone H3K4 deacetylation via histone deacetylase 5. Transient transfections and chromatin immunoprecipitation analyses demonstrated that NF-1 was required for ZFP148 protein binding to smooth muscle marker genes promoters during aneurysm formation. Elimination of NF-1 using shRNA approaches demonstrated that NF-1 is required for binding and elimination of NF-1 increased BRG1 recruitment, the ATPase subunit of the SWI/SWF complex, and increased histone acetylation. Conclusions- ZFP148 plays a critical role in multiple murine models of aneurysm formation. These results suggest that ZFP148 is important in the regulation of proliferation, smooth muscle gene downregulation, and apoptosis in aneurysm development.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Proteínas de Ligação a DNA/metabolismo , Miócitos de Músculo Liso/metabolismo , Neurofibromina 1/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/metabolismo , Apoptose , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Killer-Antagonista Homóloga a bcl-2/genética
12.
Ann Surg ; 269(6): 1176-1183, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31082918

RESUMO

OBJECTIVE: We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA: Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS: Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS: Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS: Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/terapia , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Parada Cardíaca/complicações , Masculino , Traumatismo por Reperfusão/etiologia , Suínos
13.
FASEB J ; : fj201701138RR, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29812968

RESUMO

The formation of an abdominal aortic aneurysm (AAA) is characterized by inflammation, macrophage infiltration, and vascular remodeling. In this study, we tested the hypothesis that mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) immunomodulate aortic inflammation, to mitigate AAA formation via modulation of microRNA-147. An elastase-treatment model of AAA was used in male C57BL/6 wild-type (WT) mice. Administration of EVs in elastase-treated WT mice caused a significant attenuation of aortic diameter and mitigated proinflammatory cytokines, inflammatory cell infiltration, an increase in smooth muscle cell α-actin expression, and a decrease in elastic fiber disruption, compared with untreated mice. A 10-fold up-regulation of microRNA (miR)-147, a key mediator of macrophage inflammatory responses, was observed in murine aortic tissue in elastase-treated mice compared with controls on d 14. EVs derived from MSCs transfected with miR-147 mimic, but not with miR-147 inhibitor, attenuated aortic diameter, inflammation, and leukocyte infiltration in elastase-treated mice. In vitro studies of human aortic tissue explants and murine-derived CD11b+ macrophages induced proinflammatory cytokines after elastase treatment, and the expression was attenuated by cocultures with EVs transfected with miR-147 mimic, but not with miR-147 inhibitor. Thus, our findings define a critical role of MSC-derived EVs in attenuation of aortic inflammation and macrophage activation via miR-147 during AAA formation.-Spinosa, M., Lu, G., Su, G., Bontha, S. V., Gehrau, R., Salmon, M. D., Smith, J. R., Weiss, M. L., Mas, V. R., Upchurch, G. R., Sharma, A. K. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147.

14.
Nature ; 493(7433): 547-51, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23235830

RESUMO

Lung epithelial cells can influence immune responses to airway allergens. Airway epithelial cells also undergo apoptosis after encountering environmental allergens; yet, relatively little is known about how these are cleared, and their effect on airway inflammation. Here we show that airway epithelial cells efficiently engulf apoptotic epithelial cells and secrete anti-inflammatory cytokines, dependent upon intracellular signalling by the small GTPase Rac1. Inducible deletion of Rac1 expression specifically in airway epithelial cells in a mouse model resulted in defective engulfment by epithelial cells and aberrant anti-inflammatory cytokine production. Intranasal priming and challenge of these mice with house dust mite extract or ovalbumin as allergens led to exacerbated inflammation, augmented Th2 cytokines and airway hyper-responsiveness, with decreased interleukin (IL)-10 in bronchial lavages. Rac1-deficient epithelial cells produced much higher IL-33 upon allergen or apoptotic cell encounter, with increased numbers of nuocyte-like cells. Administration of exogenous IL-10 'rescued' the airway inflammation phenotype in Rac1-deficient mice, with decreased IL-33. Collectively, these genetic and functional studies suggest a new role for Rac1-dependent engulfment by airway epithelial cells and in establishing the anti-inflammatory environment, and that defects in cell clearance in the airways could contribute to inflammatory responses towards common allergens.


Assuntos
Apoptose , Brônquios/citologia , Células Epiteliais/fisiologia , Inflamação/patologia , Pulmão/patologia , Fagocitose , Hipersensibilidade Respiratória/patologia , Alérgenos/imunologia , Animais , Brônquios/imunologia , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Poeira/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-33 , Interleucinas/biossíntese , Interleucinas/imunologia , Pulmão/imunologia , Camundongos , Ovalbumina/imunologia , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Heart Surg Forum ; 22(1): E001-E007, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30802188

RESUMO

BACKGROUND: Today's declining federal budget for scientific research is making it consistently more difficult to become federally funded. We hypothesized that even in this difficult era, surgeon-scientists have remained among the most productive and impactful researchers in lung transplantation. METHODS: Grants awarded by the NIH for the study of lung transplantation between 1985 and 2015 were identified by searching NIH RePORTER for 5 lung transplantation research areas. A grant impact metric was calculated for each grant by dividing the sum of impact factors for all associated manuscripts by the total funding for that grant. We used nonparametric univariate analysis to compare grant impact metrics by department. RESULTS: We identified 109 lung transplantation grants, totaling approximately $300 million, resulting in 2304 papers published in 421 different journals. Surgery has the third highest median grant impact metric (4.2 per $100,000). The department of surgery had a higher median grant impact metric compared to private companies (P <.0001). There was no statistical difference in the grant impact metric compared to all other medical specialties, individual departments with multiple grants, or all basic science departments (all P >.05). CONCLUSIONS: Surgeon-scientists in the field of lung transplantation have received fewer grants and less total funding compared to other researchers but have maintained an equally high level of productivity and impact. The dual-threat academic surgeon-scientist is an important asset to the research community and should continue to be supported by the NIH.


Assuntos
Pesquisa Biomédica/organização & administração , Administração Financeira/métodos , Organização do Financiamento , Transplante de Pulmão , Cirurgiões , Humanos , Estudos Retrospectivos , Estados Unidos
16.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L301-L312, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745255

RESUMO

Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Edema Pulmonar/metabolismo , Traumatismo por Reperfusão/metabolismo , Vasculite/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/genética , Carbenoxolona/farmacologia , Conexinas/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Probenecid/farmacologia , Edema Pulmonar/dietoterapia , Edema Pulmonar/genética , Edema Pulmonar/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Vasculite/tratamento farmacológico , Vasculite/genética , Vasculite/patologia
17.
J Vasc Surg ; 68(6S): 93S-103S, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30470363

RESUMO

OBJECTIVE: Resolvins have been shown to attenuate inflammation, whereas NETosis, the process of neutrophils releasing neutrophil extracellular traps (NETs), produces increased inflammation. It is hypothesized that treatment of animals with resolvin D1 (RvD1) would reduce abdominal aortic aneurysm (AAA) formation by inhibiting NETosis. METHODS: Wild-type 8- to 12-week-old C57BL/6 male mice (n = 47) and apolipoprotein E-deficient (ApoE-/-) mice (n = 20) were used in two models to demonstrate the effects of RvD1 on AAA growth. In the topical elastase AAA model, wild-type mice were divided into three groups: a deactivated elastase control group, in which sham surgery was performed using deactivated elastase and mice were intravenously injected with phosphate-buffered saline (PBS) once a day until harvest; an elastase group, in which active elastase was used to induce AAA and mice were injected with PBS daily until harvest; and an RvD1-treated group, in which AAA was induced and mice were injected with RvD1 daily until harvest. In the angiotensin II (Ang II)-induced AAA model, ApoE-/- mice were fed a high-fat diet and implanted with osmotic infusion pumps containing Ang II (1000 ng/kg/min). The Ang II model was divided into two groups: an Ang II control group, in which Ang II was delivered and mice were injected with PBS daily until harvest; and an RvD1-treated group, in which Ang II was delivered and mice were injected with RvD1 daily until harvest. On postoperative day 3, day 14, or day 28, aortic and blood samples were collected for Western blot, histology, cytokine array, enzyme-linked immunosorbent assay, and gelatin zymography after aortic diameter measurement. RESULTS: The day 14 RvD1-treated group demonstrated 42% reduced AAA diameter compared with the elastase group (P < .001). On postoperative day 3, the RvD1-treated group showed decreased levels of NETosis markers citrullinated histone H3 (P = .04) and neutrophil elastase (P = .002) compared with the elastase group. Among important cytokines involved in AAA formation, interleukin (IL) 1ß was downregulated (P = .02) whereas IL-10, a protective cytokine, was upregulated (P = .01) in the RvD1-treated group. Active matrix metalloproteinase 2 also decreased in the RvD1-treated group (P = .03). The RvD1-treated group in the Ang II AAA model, a second model, demonstrated reduced AAA diameter compared with the Ang II control group on day 28 (P < .046). The RvD1-treated group showed decreased levels of citrullinated histone H3 on day 3 (P = .002). Cytokines interferon γ, IL-1ß, C-X-C motif chemokine ligand 10, monocyte chemotactic protein 1, and regulated on activation, normal T cell expressed and secreted (RANTES) were all decreased on day 28 (P < .05). CONCLUSIONS: RvD1-mediated inhibition of NETosis may represent a future medical treatment for the attenuation of AAA growth.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Citrulinação , Citocinas/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Neutrófilos/metabolismo , Neutrófilos/patologia , Elastase Pancreática , Remodelação Vascular/efeitos dos fármacos
18.
Am J Nephrol ; 47(6): 376-384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791896

RESUMO

BACKGROUND: Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). METHODS: Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. RESULTS: By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. CONCLUSIONS: Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico por imagem , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Microtomografia por Raio-X , Adulto , Estudos Transversais , Feminino , Humanos , Masculino
19.
J Surg Res ; 223: 58-63, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433886

RESUMO

BACKGROUND: The number of patients with end-stage pulmonary disease awaiting lung transplantation is at an all-time high, while the supply of available organs remains stagnant. Utilizing donation after circulatory death (DCD) donors may help to address the supply-demand mismatch. The objective of this study is to determine the potential donor pool expansion with increased procurement of DCD organs from patients who die at hospitals. MATERIAL AND METHODS: The charts of all patients who died at a single, rural, quaternary-care institution between August 2014 and June 2015 were reviewed for lung transplant candidacy. Inclusion criteria were age <65 y, absence of cancer and lung pathology, and cause of death other than respiratory or sepsis. RESULTS: A total of 857 patients died within a 1-year period and were stratified by age: pediatric <15 y (n = 32, 4%), young 15-64 y (n = 328, 38%), and old >65 y (n = 497, 58%). Those without cancer totaled 778 (90.8%) and 512 (59%) did not have lung pathology. This leaves 85 patients qualifying for DCD lung donation (pediatric n = 10, young n = 75, and old n = 0). Potential donors were significantly more likely to have clear chest X-rays (24.3% versus 10.0%, P < 0.0001) and higher mean PaO2/FiO2 (342.1 versus 197.9, P < 0.0001) compared with ineligible patients. CONCLUSIONS: A significant number of DCD lungs are available every year from patients who die within hospitals. We estimate the use of suitable DCD lungs could potentially result in a significant increase in the number of lungs available for transplantation.


Assuntos
Transplante de Pulmão , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem
20.
Clin Transplant ; 32(9): e13347, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29984421

RESUMO

Bone disease in kidney transplant recipients (KTRs) is characterized by bone mineral density (BMD) loss but bone microarchitecture changes are poorly defined. In this prospective cohort study, we evaluated bone microarchitecture using non-invasive imaging modalities; high-resolution magnetic resonance imaging (MRI), peripheral quantitative computed tomography (pQCT), dual energy X-ray absorptiometry (DXA), and the trabecular bone score (TBS) following kidney transplantation. Eleven KTRs (48.3 ± 11.2 years) underwent MRI (tibia), pQCT (radius) and DXA at baseline and 12 months post-transplantation. Transiliac bone biopsies, performed at transplantation, showed 70% of patients with high/normal bone turnover. Compared with baseline, 12-month MRI showed deterioration in indices of trabecular network integrity-surface to curve ratio (S/C; -15%, P = 0.03) and erosion index (EI; +19%, P = 0.01). However, cortical area increased (+10.3%, P = 0.04), with a non-significant increase in cortical thickness (CtTh; +7.8%, P = 0.06). At 12 months, parathyroid hormone values (median 10.7 pmol/L) correlated with improved S/C (r = 0.75, P = 0.009) and EI (r = -0.71, P = 0.01) while osteocalcin correlated with CtTh (r = 0.72, P = 0.02) and area (r = 0.70, P = 0.02). TBS decreased from baseline (-5.1%, P = 0.01) with no significant changes in BMD or pQCT. These findings highlight a post-transplant deterioration in trabecular bone quality detected by MRI and TBS, independent of changes in BMD, underlining the potential utility of these modalities in evaluating bone microarchitecture in KTRs.


Assuntos
Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Falência Renal Crônica/cirurgia , Transplante de Rim/efeitos adversos , Complicações Pós-Operatórias , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA