Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1377-1409, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382086

RESUMO

Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.


Assuntos
Ácido Abscísico , Raízes de Plantas , Água , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Secas , Parede Celular/metabolismo , Solo , Desidratação
2.
PLoS Pathog ; 19(3): e1011097, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867659

RESUMO

HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , HIV-1/metabolismo , Regulação Alostérica , Inibidores de Integrase de HIV/farmacologia , Antivirais , Domínio Catalítico , Integrase de HIV/genética
3.
Proc Natl Acad Sci U S A ; 119(30): e2201072119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858424

RESUMO

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.


Assuntos
Ácido Abscísico , Etilenos , Ácidos Indolacéticos , Oryza , Raízes de Plantas , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo
4.
Nucleic Acids Res ; 49(13): 7644-7664, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34181727

RESUMO

Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.


Assuntos
Proteínas do Complexo SMN/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Humanos , Locomoção , Modelos Moleculares , Mutação , Mutação Puntual , Domínios Proteicos , Multimerização Proteica , Proteínas do Complexo SMN/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
5.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765881

RESUMO

This study introduces a prototype end-to-end Simulator software tool for simulating two-dimensional satellite multispectral imagery for a variety of satellite instrument models in aquatic environments. Using case studies, the impact of variable sensor configurations on the performance of value-added products for challenging applications, such as coral reefs and cyanobacterial algal blooms, is assessed. This demonstrates how decisions regarding satellite sensor design, driven by cost constraints, directly influence the quality of value-added remote sensing products. Furthermore, the Simulator is used to identify situations where retrieval algorithms require further parameterization before application to unsimulated satellite data, where error sources cannot always be identified or isolated. The application of the Simulator can verify whether a given instrument design meets the performance requirements of end-users before build and launch, critically allowing for the justification of the cost and specifications for planned and future sensors. It is hoped that the Simulator will enable engineers and scientists to understand important design trade-offs in phase 0/A studies easily, quickly, reliably, and accurately in future Earth observation satellites and systems.

6.
Plant Physiol ; 185(3): 781-795, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793942

RESUMO

Nutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis. A modular platform called RhizoFlux was developed for high-throughput phenotyping of multiple ion-uptake rates in maize (Zea mays L.). Using this system, uptake rates were characterized for the crop macronutrients nitrate, ammonium, potassium, phosphate, and sulfate among the Nested Association Mapping (NAM) population founder lines. The data revealed substantial genetic variation for multiple ion-uptake rates in maize. Interestingly, specific nutrient uptake rates (nutrient uptake rate per length of root) were found to be both heritable and distinct from total uptake and plant size. The specific uptake rates of each nutrient were positively correlated with one another and with specific root respiration (root respiration rate per length of root), indicating that uptake is governed by shared mechanisms. We selected maize lines with high and low specific uptake rates and performed an RNA-seq analysis, which identified key regulatory components involved in nutrient uptake. The high-throughput multiple ion-uptake kinetics pipeline will help further our understanding of nutrient uptake, parameterize holistic plant models, and identify breeding targets for crops with more efficient nutrient acquisition.


Assuntos
Transporte de Íons/genética , Transporte de Íons/fisiologia , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Variação Genética , Genótipo
7.
Physiol Plant ; 174(2): e13672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35297059

RESUMO

Advances in next-generation sequencing and other high-throughput technologies have facilitated multiomics research, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and phenomics. The resultant emerging multiomics data have brought new challenges as well as opportunities, as seen in the plant and agriculture science domains. We reviewed several bioinformatic and computational methods, models, and platforms, and we have highlighted some of our in-house developed efforts aimed at multiomics data analysis, integration, and management issues faced by the research community. A case study using multiomics datasets generated from our studies of maize nodal root growth under water deficit stress demonstrates the power of these datasets and some other publicly available tools. This analysis also sheds light on the landscape of such applied bioinformatic tools currently available for plant and crop science studies and introduces emerging trends and how they may affect the future.


Assuntos
Biologia Computacional , Zea mays , Agricultura , Biologia Computacional/métodos , Genômica/métodos , Plantas , Água , Zea mays/genética
8.
Semin Musculoskelet Radiol ; 26(6): 717-729, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36791740

RESUMO

Management of the diabetic foot is complex and challenging, requiring a multidisciplinary approach. Imaging plays an important role in the decision-making process regarding surgery. This article discusses the presurgical perspective and postsurgical evaluation of the diabetic foot.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/diagnóstico por imagem , Pé Diabético/cirurgia
9.
Immunol Cell Biol ; 99(5): 496-508, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33483996

RESUMO

The conceptual basis for a genetic predisposition underlying the risk for developing type 1 diabetes (T1D) predates modern human molecular genetics. Over half of the genetic risk has been attributed to the human leukocyte antigen (HLA) class II gene region and to the insulin (INS) gene locus - both thought to confer direction of autoreactivity and tissue specificity. Notwithstanding, questions still remain regarding the functional contributions of a vast array of minor polygenic risk variants scattered throughout the genome that likely influence disease heterogeneity and clinical outcomes. Herein, we summarize the available literature related to the T1D-associated coding variants defined at the time of this review, for the genes PTPN22, IFIH1, SH2B3, CD226, TYK2, FUT2, SIRPG, CTLA4, CTSH and UBASH3A. Data from genotype-selected human cohorts are summarized, and studies from the non-obese diabetic (NOD) mouse are presented to describe the functional impact of these variants in relation to innate and adaptive immunity as well as to ß-cell fragility, with expression profiles in tissues and peripheral blood highlighted. The contribution of each variant to progression through T1D staging, including environmental interactions, are discussed with consideration of how their respective protein products may serve as attractive targets for precision medicine-based therapeutics to prevent or suspend the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Genótipo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo de Nucleotídeo Único
10.
Plant Cell Environ ; 43(10): 2409-2427, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32644247

RESUMO

Maize lateral roots exhibit determinate growth, whereby the meristem is genetically programmed to stop producing new cells. To explore whether lateral root determinacy is modified under water deficits, we studied two maize genotypes (B73 and FR697) with divergent responses of lateral root growth to mild water stress using an experimental system that provided near-stable water potential environments throughout lateral root development. First-order laterals of the primary root system of FR697 exhibited delayed determinacy when grown at a water potential of -0.28 MPa, resulting in longer and wider roots than in well-watered (WW) controls. In B73, in contrast, neither the length nor width of lateral roots was affected by water deficit. In water-stressed FR697, root elongation continued at or above the maximum rate in WW roots for 3 days longer, and was still 45% of maximum when WW roots approached their determinate length. Maintenance of root elongation was associated with sustained rates of cell production. In addition, kinematic analyses showed that reductions in tissue expansion rates with aging were delayed in the longitudinal, radial and tangential planes throughout the root growth zone. Thus, this study reveals large genotypic differences in the interaction of water stress with developmental determinacy of maize lateral roots.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Adaptação Fisiológica , Desidratação , Estudos de Associação Genética , Raízes de Plantas/fisiologia , Análise Espaço-Temporal , Zea mays/genética , Zea mays/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31724470

RESUMO

Combined sewer overflow (CSO) water introduces pathogens to receiving waters. To control pathogenic releases, chlorine may be added to disinfect CSO water. The added chlorine may react with water constituents to form oxidative species known as chlorine-produced oxidants (CPO). CPO are the sum of free and combined oxidative species that form upon adding free chlorine-bearing compounds (e.g. gaseous chlorine or hypochlorite) to water. CPO discharge is often regulated by governing agencies. Current methods to model CPO behavior do not account for CPO decay and dilution simultaneously in receiving water. This study creates a novel model for CPO demand and dilution in receiving water from chlorinated effluent in order to determine site-specific practices for implementation of a CSO water disinfection regime. To do this, representative receiving water was collected and dosed with 1, 2, and 4 mg/L chlorine. The residual chlorine was measured at intervals up to 30 min after dosing. The immediate and subsequent chlorine demand was calculated, with the subsequent demand modeled by simultaneous application of dilution and decay using pseudo-first-order decay kinetics. A comparison of model calculations indicates that application of dilution before decay underestimates CPO demand, while application of decay before dilution overestimates CPO demand.


Assuntos
Cloro/química , Desinfetantes/química , Desinfecção/métodos , Oxidantes/química , Esgotos/química , Compostos Clorados/química , Modelos Químicos , Purificação da Água
12.
BMC Plant Biol ; 19(1): 447, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651253

RESUMO

BACKGROUND: MicroRNA-mediated gene regulatory networks play a significant role in plant growth and development and environmental stress responses. RESULTS: We identified 79 microRNAs (miRNAs) and multiple miRNA variants (isomiRs) belonging to 26 miRNA families in the primary root growth zone of maize seedlings grown at one of three water potentials: well-watered (- 0.02 MPa), mild water deficit stress (- 0.3 MPa), and severe water deficit stress (- 1.6 MPa). The abundances of 3 miRNAs (mild stress) and 34 miRNAs representing 17 families (severe stress) were significantly different in water-deficit stressed relative to well-watered controls (FDR < 0.05 and validated by stem loop RT-qPCR). Degradome sequencing revealed 213 miRNA-regulated transcripts and trancriptome profiling revealed that the abundance of 77 (miRNA-regulated) were regulated by water-defecit stress. miR399e,i,j-3p was strongly regulated by water-defcit stress implicating the possibility of nutrient deficiency during stress. CONCLUSIONS: We have identified a number of maize miRNAs that respond to specific water deficits applied to the primary root growth zone. We have also identified transcripts that are targets for miRNA regulation in the root growth zone under water-deficit stress. The miR399e,i,j-3p that is known to regulate phosphate uptake in response to nutrient deficiencies responds to water-deficit stress, however, at the seedling stage the seed provides adequate nutrients for root growth thus miR399e,i,j-3p may play a separate role in water-deficit responses. A water-deficit regulated maize transcript, similar to known miR399 target mimics, was identified and we hypothesized that it is another regulatory player, moderating the role of miR399e,i,j-3p, in primary root growth zone water deficit responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , Água/fisiologia , Zea mays/genética , Secas , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , RNA de Plantas/genética , Estresse Fisiológico , Zea mays/fisiologia
13.
Plant Cell Environ ; 42(7): 2259-2273, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981147

RESUMO

Lateral root developmental plasticity induced by mild water stress was examined across a high-resolution series of growth media water potentials (Ψw ) in two genotypes of maize. The suitability of several media for imposing near-stable Ψw treatments on transpiring plants over prolonged growth periods was assessed. Genotypic differences specific to responses of lateral root growth from the primary root system occurred between cultivars FR697 and B73 over a narrow series of water stress treatments ranging in Ψw from -0.25 to -0.40 MPa. In FR697, both the average length and number of first-order lateral roots were substantially enhanced at a Ψw of -0.25 MPa compared with well-watered controls. These effects were separated spatially, occurring primarily in the upper and lower regions of the axial root, respectively. Furthermore, first-order lateral roots progressively increased in diameter with increasing water stress, resulting in a maximum 2.3-fold increase in root volume at a Ψw of -0.40 MPa. In B73, in contrast, the length, diameter, nor number of lateral roots was increased in any of the water stress treatments. The genotype-specific responses observed over this narrow range of Ψw demonstrate the necessity of high-resolution studies at mild stress levels for characterization of lateral root developmental plasticity.


Assuntos
Adaptação Fisiológica , Genótipo , Raízes de Plantas/crescimento & desenvolvimento , Água/fisiologia , Zea mays/crescimento & desenvolvimento , Biomassa , Desidratação , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Zea mays/fisiologia
14.
Nucleic Acids Res ; 45(12): 7339-7353, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549184

RESUMO

Serine integrases are bacteriophage enzymes that carry out site-specific integration and excision of their viral genomes. The integration reaction is highly directional; recombination between the phage attachment site attP and the host attachment site attB to form the hybrid sites attL and attR is essentially irreversible. In a recent model, extended coiled-coil (CC) domains in the integrase subunits are proposed to interact in a way that favors the attPxattB reaction but inhibits the attLxattR reaction. Here, we show for the Listeria innocua integrase (LI Int) system that the CC domain promotes self-interaction in isolated Int and when Int is bound to attachment sites. Three independent crystal structures of the CC domain reveal the molecular nature of the CC dimer interface. Alanine substitutions of key residues in the interface support the functional significance of the structural model and indicate that the same interaction is responsible for promoting integration and for inhibiting excision. An updated model of a LI Int•attL complex that incorporates the high resolution CC dimer structure provides insights that help to explain the unusual CC dimer structure and potential sources of stability in Int•attL and Int•attR complexes. Together, the data provide a molecular basis for understanding serine integrase directionality.


Assuntos
Sítios de Ligação Microbiológicos , Bacteriófagos/genética , DNA Bacteriano/química , Integrases/química , Listeria/virologia , Serina/química , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Integrases/genética , Integrases/metabolismo , Cinética , Listeria/genética , Listeria/metabolismo , Modelos Moleculares , Mutagênese Insercional , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Especificidade por Substrato , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Plant Cell Environ ; 40(5): 686-701, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28039925

RESUMO

Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse transcription quantitative PCR (RT-qPCR) was used to examine the abundance of 618 transcripts from 536 TF genes in individual root and shoot tissues of maize seedlings grown in vermiculite under well-watered (water potential of -0.02 MPa) and water-deficit conditions (water potentials of -0.3 and -1.6 MPa). A linear mixed model identified 433 TF transcripts representing 392 genes that differed significantly in abundance in at least one treatment, including TFs that intersect growth and development and environmental stress responses. TFs were extensively differentially regulated across stressed maize seedling tissues. Hierarchical clustering revealed TFs with stress-induced increased abundance in primary root tips that likely regulate root growth responses to water deficits, possibly as part of abscisic acid and/or auxin-dependent signaling pathways. Ten of these TFs were selected for validation in nodal root tips of drought-stressed field-grown plants (late V1 to early V2 stage). Changes in abundance of these TF transcripts under a field drought were similar to those observed in the seedling system.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plântula/genética , Fatores de Transcrição/genética , Água/metabolismo , Zea mays/genética , Análise por Conglomerados , Secas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Zea mays/crescimento & desenvolvimento
16.
J Biol Chem ; 290(33): 20185-99, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26092730

RESUMO

The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 µM. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.


Assuntos
Biopolímeros/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sequência de Aminoácidos , Biopolímeros/química , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Polimerização , Proteínas de Ligação a RNA/química , Homologia de Sequência de Aminoácidos , Proteína 1 de Sobrevivência do Neurônio Motor/química
17.
Plant Cell Environ ; 39(9): 2043-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27341663

RESUMO

Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.


Assuntos
Membrana Celular/metabolismo , Desidratação , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Parede Celular/metabolismo , Metabolismo dos Lipídeos , Raízes de Plantas/crescimento & desenvolvimento , Proteômica , Zea mays/crescimento & desenvolvimento
18.
Nature ; 467(7316): 684-6, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20930839

RESUMO

Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

19.
Mol Divers ; 20(4): 789-803, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27631533

RESUMO

High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Algoritmos , Simulação por Computador , Descoberta de Drogas/normas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/normas , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
20.
Plant Cell Environ ; 38(9): 1866-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210866

RESUMO

Maize (Zea mays ssp. mays L.) is highly susceptible to drought stress. This work focused on whole-plant physiological mechanisms by which a biotechnology-derived maize event expressing bacterial cold shock protein B (CspB), MON 87460, increased grain yield under drought. Plants of MON 87460 and a conventional control (hereafter 'control') were tested in the field under well-watered (WW) and water-limited (WL) treatments imposed during mid-vegetative to mid-reproductive stages during 2009-2011. Across years, average grain yield increased by 6% in MON 87460 compared with control under WL conditions. This was associated with higher soil water content at 0.5 m depth during the treatment phase, increased ear growth, decreased leaf area, leaf dry weight and sap flow rate during silking, increased kernel number and harvest index in MON 87460 than the control. No consistent differences were observed under WW conditions. This indicates that MON 87460 acclimated better under WL conditions than the control by lowering leaf growth which decreased water use during silking, thereby eliciting lower stress under WL conditions. These physiological responses in MON 87460 under WL conditions resulted in increased ear growth during silking, which subsequently increased the kernel number, harvest index and grain yield compared to the control.


Assuntos
Biotecnologia/métodos , Secas , Zea mays/fisiologia , Proteínas de Bactérias/genética , Grão Comestível , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA