Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36347537

RESUMO

Target discovery and identification processes are driven by the increasing amount of biomedical data. The vast numbers of unstructured texts of biomedical publications provide a rich source of knowledge for drug target discovery research and demand the development of specific algorithms or tools to facilitate finding disease genes and proteins. Text mining is a method that can automatically mine helpful information related to drug target discovery from massive biomedical literature. However, there is a substantial lag between biomedical publications and the subsequent abstraction of information extracted by text mining to databases. The knowledge graph is introduced to integrate heterogeneous biomedical data. Here, we describe e-TSN (Target significance and novelty explorer, http://www.lilab-ecust.cn/etsn/), a knowledge visualization web server integrating the largest database of associations between targets and diseases from the full scientific literature by constructing significance and novelty scoring methods based on bibliometric statistics. The platform aims to visualize target-disease knowledge graphs to assist in prioritizing candidate disease-related proteins. Approved drugs and associated bioactivities for each interested target are also provided to facilitate the visualization of drug-target relationships. In summary, e-TSN is a fast and customizable visualization resource for investigating and analyzing the intricate target-disease networks, which could help researchers understand the mechanisms underlying complex disease phenotypes and improve the drug discovery and development efficiency, especially for the unexpected outbreak of infectious disease pandemics like COVID-19.


Assuntos
COVID-19 , Humanos , Mineração de Dados/métodos , Publicações , Conhecimento , Algoritmos , Proteínas
2.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36252922

RESUMO

Identification of new chemical compounds with desired structural diversity and biological properties plays an essential role in drug discovery, yet the construction of such a potential space with elements of 'near-drug' properties is still a challenging task. In this work, we proposed a multimodal chemical information reconstruction system to automatically process, extract and align heterogeneous information from the text descriptions and structural images of chemical patents. Our key innovation lies in a heterogeneous data generator that produces cross-modality training data in the form of text descriptions and Markush structure images, from which a two-branch model with image- and text-processing units can then learn to both recognize heterogeneous chemical entities and simultaneously capture their correspondence. In particular, we have collected chemical structures from ChEMBL database and chemical patents from the European Patent Office and the US Patent and Trademark Office using keywords 'A61P, compound, structure' in the years from 2010 to 2020, and generated heterogeneous chemical information datasets with 210K structural images and 7818 annotated text snippets. Based on the reconstructed results and substituent replacement rules, structural libraries of a huge number of near-drug compounds can be generated automatically. In quantitative evaluations, our model can correctly reconstruct 97% of the molecular images into structured format and achieve an F1-score around 97-98% in the recognition of chemical entities, which demonstrated the effectiveness of our model in automatic information extraction from chemical patents, and hopefully transforming them to a user-friendly, structured molecular database enriching the near-drug space to realize the intelligent retrieval technology of chemical knowledge.


Assuntos
Mineração de Dados , Bases de Dados de Compostos Químicos , Mineração de Dados/métodos , Bases de Dados Factuais , Descoberta de Drogas
3.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637187

RESUMO

SUMMARY: Construction of high-quality fragment libraries by segmenting organic compounds is an important part of the drug discovery paradigm. This article presents a new method, MacFrag, for efficient molecule fragmentation. MacFrag utilized a modified version of BRICS rules to break chemical bonds and introduced an efficient subgraphs extraction algorithm for rapid enumeration of the fragment space. The evaluation results with ChEMBL dataset exhibited that MacFrag was overall faster than BRICS implemented in RDKit and modified molBLOCKS. Meanwhile, the fragments acquired through MacFrag were more compliant with the 'Rule of Three'. AVAILABILITY AND IMPLEMENTATION: https://github.com/yydiao1025/MacFrag. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Descoberta de Drogas/métodos
4.
Cancer Invest ; 42(4): 345-356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38742677

RESUMO

BACKGROUND: Aquaporin-8 (AQP8) is involved in impacting glioma proliferation and can effect tumour growth by regulating Intracellular reactive oxygen species (ROS) signalling levels. In addition to transporting H2O2, AQP8 has been shown to affect ROS signaling, but evidence is lacking in gliomas. In this study, we aimed to investigate how AQP8 affects ROS signaling in gliomas. MATERIALS AND METHODS: We constructed A172 and U251 cell lines with AQP8 knockdown and AQP8 rescue by CRISPR/Cas9 technology and overexpression of lentiviral vectors. We used CCK-8 and flow cytometry to test cell proliferation and cycle, immunofluorescence and Mito-Tracker CMXRos to observe the distribution of AQP8 expression in glioma cells, Amplex and DHE to study mitochondria release of H2O2, mitochondrial membrane potential (MMP) and NAD+/NADH ratio to assess mitochondrial function and protein blotting to detect p53 and p21 expression. RESULT: We found that AQP8 co-localised with mitochondria and that knockdown of AQP8 inhibited the release of H2O2 from mitochondria and led to increased levels of ROS in mitochondria, thereby impairing mitochondrial function. We also discovered that AQP8 knockdown resulted in suppression of cell proliferation and was blocked at the G0/G1 phase with increased expression of mitochondrial ROS signalling-related p53/p21. CONCLUSIONS: This finding provides further evidence for mechanistic studies of AQP8 as a prospective target for the treatment of gliomas.


Assuntos
Aquaporinas , Proliferação de Células , Glioma , Peróxido de Hidrogênio , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Mitocôndrias/metabolismo , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Aquaporinas/metabolismo , Aquaporinas/genética , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Transdução de Sinais
5.
J Chem Inf Model ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979856

RESUMO

In the synthetic laboratory, researchers typically rely on nuclear magnetic resonance (NMR) spectra to elucidate structures of synthesized products and confirm whether they match the desired target compounds. As chemical synthesis technology evolves toward intelligence and continuity, efficient computer-assisted structure elucidation (CASE) techniques are required to replace time-consuming manual analysis and provide the necessary speed. However, current CASE methods typically aim to derive precise chemical structures from spectroscopic data, yet they suffer from drawbacks such as low accuracy, high computational cost, and reliance on chemical libraries. In meticulously designed chemical synthesis reactions, researchers prioritize confirming the attainment of the target product based on NMR spectra, rather than focusing on identifying the specific product obtained. For this purpose, we innovatively developed a binary classification model, termed as MatCS, to directly predict the relationship between NMR spectra image (including 1H NMR and 13C NMR) and the molecular structure of the target compound. After evaluating various feature extraction methods, MatCS employs a combination of the Graph Attention Networks and Graph Convolutional Networks to learn the structural features of molecular graphs and the pretrained ResNet101 network with a Convolutional Block Attention Module to extract features from NMR spectra images. The results show that on a challenging Testsim data set, which poses difficulty in distinguishing spectra of similar molecular structures, MatCS achieves comprehensive evaluation metrics with an F1-score of 0.81 and an AUC value of 0.87. Simultaneously, it exhibited commendable performance on an external SDBS data set containing experimental NMR spectra, showcasing substantial potential for structural verification tasks in real automated chemical synthesis.

6.
Lung ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753182

RESUMO

BACKGROUND: Free fatty acids (FFAs) are established risk factors for various cardiovascular and metabolic disorders. Elevated FFAs can trigger inflammatory response, which may be associated with the occurrence of acute respiratory distress syndrome (ARDS) in cardiac surgery. In this prospective study, we aimed to investigate the association between circulating FFA and the incidence of ARDS, as well as the length of ICU stay, in patients undergoing off-pump coronary artery bypass grafting (CABG). METHODS: We conducted a single-center, prospective, observational study among patients undergoing off-pump CABG. The primary endpoint was the occurrence of ARDS within 6 days after off-pump CABG. Serum FFA were measured at baseline and 24 h post-procedure, and the difference (Δ-FFA) was calculated. RESULTS: A total of 180 patients were included in the primary analysis. The median FFA was 2.3 mmol/L (quartile 1 [Q1]-Q3, 1.4-3.2) at baseline and 1.5 mmol/L (Q1-Q3, 0.9-2.3) 24 h after CABG, with a Δ-FFA of 0.6 mmol/L (Q1-Q3, -0.1 to 1.6). Patients with elevated Δ-FFA levels had a significantly higher ARDS occurrence (55.6% vs. 22.2%; P < 0.001). Elevated Δ-FFA after off-pump CABG correlated with a significantly lower PaO2/FiO2 ratio, prolonged mechanical ventilation, and extended length of ICU stay. The area under the curve (AUC) of Δ-FFA for predicting ARDS (AUC, 0.758; 95% confidence interval, 0.686-0.831) significantly exceeded the AUC of postoperative FFA (AUC, 0.708; 95% CI 0.628-0.788; P < 0.001). CONCLUSIONS: Elevated Δ-FFA levels correlated with ARDS following off-pump CABG. Monitoring FFA may assist in identifying high-risk patients for ARDS, facilitating timely interventions to improve clinical outcomes.

7.
Ecotoxicol Environ Saf ; 265: 115519, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769580

RESUMO

Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 µmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.


Assuntos
Cyperus , Melatonina , Melatonina/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , DNA/metabolismo , Estresse Oxidativo
8.
Opt Express ; 29(23): 38068-38081, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808866

RESUMO

Microstructured optical fibers (MOFs) have attracted intensive research interest in fiber-based optofluidics owing to their ability to have high-efficient light-microfluid interactions over a long distance. However, there lacks an exquisite design guidance for the utilization of MOFs in subwavelength-scale optofluidics. Here we propose a tapered hollow-core MOF structure with both light and fluid confined inside the central hole and investigate its optofluidic guiding properties by varying the diameter using the full vector finite element method. The basic optical modal properties, the effective sensitivity, and the nonlinearity characteristics are studied. Our miniature optofluidic waveguide achieves a maximum fraction of power inside the core at 99.7%, an ultra-small effective mode area of 0.38 µm2, an ultra-low confinement loss, and a controllable group velocity dispersion. It can serve as a promising platform in the subwavelength-scale optical devices for optical sensing and nonlinear optics.

9.
Opt Lett ; 46(24): 6112-6115, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34913930

RESUMO

Multicore fibers (MCFs) offer a fascinating solution to the need to increase the fiber density and thus meet the exponentially growing demand for capacity in optical communication networks. Despite overwhelming research into MCFs, the desire for a general fusion splicing scheme between dissimilar MCFs remains unanswered. Here, we propose a tapering technique to reshape MCFs that includes both reverse-tapering and down-tapering schemes and can be exploited to tailor the core-to-core spacing and modify the modal property of MCFs. By matching both the spacing and the mode field diameter, we demonstrated a low-loss (0.18 ± 0.10 dB) and low-crosstalk (-68 ± 3 dB) fusion splice between two spacing-mismatched MCFs with a spacing difference of up to 26 µm. The proposed novel schemes are also suitable for splicing between MCFs with slightly different spacings and can provide a unique perspective for fabricating MCF devices and boosting various MCF applications.

10.
Molecules ; 23(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208655

RESUMO

Water molecules play an important role in modeling protein-ligand interactions. However, traditional molecular docking methods often ignore the impact of the water molecules by removing them without any analysis or keeping them as a static part of the proteins or the ligands. Hence, the accuracy of the docking simulations will inevitably be damaged. Here, we introduce a multi-body docking program which incorporates the fixed or the variable number of the key water molecules in protein-ligand docking simulations. The program employed NSGA II, a multi-objective optimization algorithm, to identify the binding poses of the ligand and the key water molecules for a protein. To this end, a force-field-based hydration-specific scoring function was designed to favor estimate the binding affinity considering the key water molecules. The program was evaluated in aspects of the docking accuracy, cross-docking accuracy, and screening efficiency. When the numbers of the key water molecules were treated as fixed-length optimization variables, the docking accuracy of the multi-body docking program achieved a success rate of 80.58% for the best RMSD values for the recruit of the ligands smaller than 2.0 Å. The cross-docking accuracy was investigated on the presence and absence of the key water molecules by four protein targets. The screening efficiency was assessed against those protein targets. Results indicated that the proposed multi-body docking program was with good performance compared with the other programs. On the other side, when the numbers of the key water molecules were treated as variable-length optimization variables, the program obtained comparative performance under the same three evaluation criterions. These results indicated that the multi-body docking with the variable numbers of the water molecules was also efficient. Above all, the multi-body docking program developed in this study was capable of dealing with the problem of the water molecules that explicitly participating in protein-ligand binding.


Assuntos
Proteínas/química , Proteínas/metabolismo , Água/química , Algoritmos , Sítios de Ligação , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica
11.
Mater Today Bio ; 26: 101039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38596825

RESUMO

In order to improve the wound repair environment, this research has successfully developed a new multifunctional hydrogel dressing, which has strong adaptability and can accelerate wound healing. Pioneering the development of metal-ion-controlled hydrogel dressings, this research integrates dopamine and imidazole double crosslinked networks with metal-ion coordination. The resulting hydrogel dressing exhibits a notable antibacterial effect and exceptional mechanical properties, withstanding pressures of up to 12 kPa, tensions of 25 kPa, and maintaining skin adhesion at 6 kPa. Furthermore, the dressing can self-heal within only 7-8 s post-injection. Impressively, the hydrogel achieves complete biodegradation within a short timeframe (37 h). Notably, the use of various metal ions facilitates painless peeling during the degradation period, perfectly aligning with the requirements of an ideal wound dressing. This study has made significant progress in the fields of trauma repair and materials, providing strong solutions for dealing with harsh post-traumatic environments.

12.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000650

RESUMO

A novel self-gelatinizing powder was designed to accelerate wound healing through enhanced hemostasis and tissue recovery. Significantly, this research addresses the critical need for innovative wound management solutions by presenting a novel approach. Carboxymethylcellulose calcium (CMC-Ca) was synthesized using an ion exchange method, and lysine (Lys) was integrated through physical mixing to augment the material's functional characteristics. The prepared powder underwent comprehensive evaluation for its self-gelling capacity, gelation time, adhesion, swelling rate, coagulation efficiency, hemostatic effectiveness, and wound healing promotion. Results indicate that the self-gelatinizing powder exhibited remarkable water absorption capabilities, absorbing liquid up to 30 times its weight and achieving rapid coagulation within 3 min. The inclusion of Lys notably enhanced the powder's gel-forming properties. The gelation time was determined to be within 4 s using a rotational rheometer, with the powder rapidly forming a stable gel on the skin surface. Furthermore, in a mouse skin injury model, near-complete skin recovery was observed within 14 days, underscoring the powder's impressive self-healing attributes and promising application prospects in wound management.

13.
J Hazard Mater ; 471: 134287, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653132

RESUMO

Antibiotics can generally be detected in the water-sediment systems of lakes. However, research on the migration and transformation of antibiotics in water-sediment systems based on the influences of light and wind waves is minimal. To address this research gap, we investigated the specific impacts of light and wind waves on the migration and transformation of three antibiotics, norfloxacin (NOR), trimethoprim (TMP), and sulfamethoxazole (SMX), under simulated light and wind waves disturbance conditions in a water-sediment system from Taihu Lake, China. In the overlying water, NOR was removed the fastest, followed by TMP and SMX. Compared to the no wind waves groups, the disturbance of big wind waves reduced the proportion of antibiotics in the overlying water. The contributions of light and wind waves to TMP and SMX degradation were greater than those of microbial degradation. However, the non-biological and biological contributions of NOR to degradation were almost equal. Wind waves had a significant impact on the microbial community changes in the sediment, especially in Methylophylaceae. These results verified the influence of light and wind waves on the migration and transformation of antibiotics, and provide assistance for the risk of antibiotic occurrence in water and sediments.


Assuntos
Antibacterianos , Sedimentos Geológicos , Sulfametoxazol , Poluentes Químicos da Água , Vento , Antibacterianos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Sulfametoxazol/química , Sedimentos Geológicos/química , Norfloxacino/química , Trimetoprima/química , Lagos/química , China , Luz
14.
ACS Appl Mater Interfaces ; 16(22): 28709-28718, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780517

RESUMO

MXenes, represented by Ti3C2Tx, have been widely studied in the electrochemical energy storage fields, including lithium-ion batteries, for their unique two-dimensional structure, tunable surface chemistry, and excellent electrical conductivity. Recently, Nb2CTx, as a new type of MXene, has attracted more and more attention due to its high theoretical specific capacity of 542 mAh g-1. However, the preparation of few-layer Nb2CTx nanosheets with high-quality remains a challenge, which limits their research and application. In this work, high-quality few-layer Nb2CTx nanosheets with a large lateral size and a high conductivity of up to 500 S cm-1 were prepared by a simple HCl-LiF hydrothermal etching method, which is 2 orders of magnitude higher than that of previously reported Nb2CTx. Furthermore, from its aqueous ink, the viscosity-tunable organic few-layer Nb2CTx ink was prepared by HCl-induced flocculation and N-methyl-2-pyrrolidone treatment. When using the organic few-layer Nb2CTx ink as an additive-free anode of lithium-ion batteries, it showed excellent cycling performance with a reversible specific capacity of 524.0 mAh g-1 after 500 cycles at 0.5 A g-1 and 444.0 mAh g-1 after 5000 cycles at 1 A g-1. For rate performance, a specific capacity of 159.8 mAh g-1 was obtained at a high current density of 5 A g-1, and an excellent capacity retention rate of about 95.65% was achieved when the current density returned to 0.5 A g-1. This work presents a simple and scalable process for the preparation of high-quality Nb2CTx and its aqueous/organic ink, which demonstrates important application potential as electrodes for electrochemical energy storage devices.

15.
Int Immunopharmacol ; 131: 111911, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527401

RESUMO

BACKGROUND: Acute lung injury (ALI) has garnered significant attention in the field of respiratory and critical care due to its high mortality and morbidity, and limited treatment options. The role of the endothelial barrier in the development of ALI is crucial. Several bacterial pathogenic factors, including the bacteria-derived formyl peptide (fMLP), have been implicated in damaging the endothelial barrier and initiating ALI. However, the mechanism by which fMLP causes ALI remains unclear. In this study, we aim to explore the mechanisms of ALI caused by fMLP and evaluate the protective effects of MOTS-c, a mitochondrial-derived peptide. METHODS: We established a rat model of ALI and a human pulmonary microvascular endothelial cell (HPMVEC) model of ALI by treatment with fMLP. In vivo experiments involved lung histopathology assays, assessments of inflammatory and oxidative stress factors, and measurements of ferroptosis-related proteins and barrier proteins to evaluate the severity of fMLP-induced ALI and the type of tissue damage in rats. In vitro experiments included evaluations of fMLP-induced damage on HPMVEC using cell activity assays, assessments of inflammatory and oxidative stress factors, measurements of ferroptosis-related proteins, endothelial barrier function assays, and examination of the key role of FPR2 in fMLP-induced ALI. We also assessed the protective effect of MOTS-c and investigated its mechanism on the fMLP-induced ALI in vivo and in vitro. RESULTS: Results from both in vitro and in vivo experiments demonstrate that fMLP promotes the expression of inflammatory and oxidative stress factors, activates ferroptosis and disrupts the vascular endothelial barrier, ultimately contributing to the development and progression of ALI. Mechanistically, ferroptosis mediated by FPR2 plays a key role in fMLP-induced injury, and the Nrf2 and MAPK pathways are involved in this process. Knockdown of FPR2 and inhibition of ferroptosis can attenuate ALI induced by fMLP. Moreover, MOTS-c could protect the vascular endothelial barrier function by inhibiting ferroptosis and suppressing the expression of inflammatory and oxidative stress factors through Nrf2 and MAPK pathways, thereby alleviating fMLP-induced ALI. CONCLUSION: Overall, fMLP disrupts the vascular endothelial barrier through FPR2-mediated ferroptosis, leading to the development and progression of ALI. MOTS-c demonstrates potential as a protective treatment against ALI by alleviating the damage induced by fMLP.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Humanos , Animais , Ratos , Fator 2 Relacionado a NF-E2 , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Mitocôndrias , Lipopolissacarídeos , Receptores de Formil Peptídeo , Receptores de Lipoxinas
16.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177148

RESUMO

One of the most advanced, promising, and commercially viable research issues in the world of hydrogel dressing is gaining functionality to achieve improved therapeutic impact or even intelligent wound repair. In addition to the merits of ordinary hydrogel dressings, functional hydrogel dressings can adjust their chemical/physical properties to satisfy different wound types, carry out the corresponding reactions to actively create a healing environment conducive to wound repair, and can also control drug release to provide a long-lasting benefit. Although a lot of in-depth research has been conducted over the last few decades, very few studies have been properly summarized. In order to give researchers a basic blueprint for designing functional hydrogel dressings and to motivate them to develop ever-more intelligent wound dressings, we summarized the development of functional hydrogel dressings in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.

17.
Acta Biochim Pol ; 70(4): 835-841, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38099479

RESUMO

PURPOSE: Due to its crucial cancer regulatory role, microRNA-508-3p has been reported as a potential therapeutic anticancer molecular target. The present work encompassed the molecular characterization of microRNA-508-3p in lung cancer emphasizing on understanding the possible mechanism of its regulatory action. METHODS: qRT-PCR was performed to estimate the relative gene expression of microRNA-508-p in the tissue samples. The proliferation of cancer cells was determined by cell counting kit-8. The colony formation from cancer cells was analyzed by clonogenic assay. Mitotic phase distribution was understood by employing the flow cytometric technique. Edu-Hoechst staining was used for the assessment of cell viability. In silico analysis and dual-luciferase assay were used for target identification of microRNA-508-3p in lung cancer. Immunofluorescence and western blotting studies were carried out for relative protein expression. The rat models were used for performing the in vivo experimental procedures. RESULTS: The study showed the significant down-regulation of microRNA-508-3p in lung cancer. The lower expression levels of microRNA-508-3p were shown to be associated with poor survival of lung cancer patients. The over-expression of microRNA-508-3p was found to decline the proliferation and viability of cancer cells together with the induction of mitotic cell cycle arrest at G1 by targeting G1 to S phase transition 1 (GSPT1) protein. MicroRNA-508-3p up-regulation inhibited the in vivo tumor growth in rat models. CONCLUSION: Our study identifies miR-508-3p as a pivotal regulator of lung cancer cell proliferation by targeting the GSPT1 protein. This highlights its potential as a tumor suppressor and a therapeutic target for lung cancer. Our findings offer mechanistic insights into miRNA-mediated cancer progression, prompting further research in this intricate regulatory network.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Ratos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fase S/genética
18.
Int J Dev Neurosci ; 83(4): 333-345, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081713

RESUMO

PURPOSE: The purpose of this work is to examine the impact of AQP8 on the proliferation and development of human glioma cell lines A172 and U251 and to determine if aquaporin 8 (AQP8) is associated with GSK-3ß phosphorylation and nuclear transport of ß-catenin in the Wnt signaling pathway. METHODS: AQP8 knockdown cell lines were constructed using a CRISPR/Cas9 double vector lentivirus infection. SAM/dCas9 was used to construct AQP8 overexpression cell lines and the CV084 lentivirus vector was used to construct AQP8 rescue cell lines. AQP8 and its mRNA, and phosphorylated GSK-3ß, ß-catenin, and other related proteins, were detected using western blot and qRT-PCR. Glioma cell apoptosis was detected using Hoechst 33342 dye. The migration of glioma cells was discovered using a wound healing assay. ß-catenin localization in cells was detected using immunofluorescence staining. RESULTS: The proliferative and migratory capacities of A172 and U251 cells were significantly enhanced after AQP8 overexpression. The Wnt signaling pathways appeared to have higher levels of phosphorylated GSK-3ß and ß-catenin, and a rise in the fluorescence intensity ratio of ß-catenin in the nucleus and cytoplasm, which suggests that ß-catenin translocated into the nucleus, while AQP8 knockdown produced the opposite effect. Further, overexpression of AQP8 in AQP8 knockdown cell lines rescued the reduction of related protein levels caused by AQP8 knockdown. CONCLUSION: High AQP8 expression promotes proliferation and growth of glioma cells, a process associated with phosphorylation of GSK-3ß and nuclear translocation of ß-catenin.


Assuntos
Glioma , beta Catenina , Humanos , Fosforilação , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transporte Ativo do Núcleo Celular , Proliferação de Células , beta Catenina/genética , beta Catenina/metabolismo , Glioma/genética , Via de Sinalização Wnt , Linhagem Celular Tumoral
19.
Environ Sci Pollut Res Int ; 30(52): 112409-112421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831246

RESUMO

Antibiotics are commonly detected in natural waters. The organic matter (OM) in suspended particulate matter (SPM) has a critical impact on the adsorption of antibiotics in water. We investigated the contribution of OM content and form to the adsorption of tetracycline (TC) and norfloxacin (NOR) in the SPM of Taihu Lake. To change the content and form of OM in SPM, the samples were subjected to pyrolysis at 505 ˚C and oxidization with H2O2, respectively. Combustion almost completely removed OM, while oxidation removed most of the OM and transformed the remaining OM. Regardless of whether the OM changed or not, the adsorption of NOR and TC by SPM was more in line with the pseudo-second-order kinetic model instead of pseudo-first-order. The fitting of the intraparticle diffusion model showed that the removal of OM had a certain degree of change in the adsorption process. The isothermal adsorption of TC in all samples was more in line with the Temkin model. The isothermal adsorption of NOR in the oxidized sample conformed to the Temkin model, while it conformed to the Langmuir model in the original sample and the sample removed OM via combustion. The adsorption capacity of SPM with almost complete removal of OM significantly decreased, while conversely, the adsorption capacity of SPM after oxidation increased. This indicates that both the content and form of OM affect the adsorption of antibiotics by SPM, and the form of OM has a greater impact. The contribution of OM to NOR adsorption was greater than that of TC. In conclusion, the results verify the importance of OM in adsorbing antibiotics onto SPM, which may provide basic data for antibiotic migration in surface water.


Assuntos
Norfloxacino , Poluentes Químicos da Água , Material Particulado/análise , Adsorção , Peróxido de Hidrogênio , Sedimentos Geológicos , Antibacterianos/análise , Tetraciclina , Água/análise , Poluentes Químicos da Água/análise
20.
Zootaxa ; 5343(3): 281-295, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-38221375

RESUMO

The genus Diestramima comprises 41 species from Asia with 31 species distributed in China. In this study, we reconstruct the phylogeny tree of Diestramima species by maximum likelihood and Bayesian inference based on three mitochondrial genes (COI, 12S and 16S). The result indicates that the phylogenetic results are coherent with that based on five molecular markers (COI, 12S, 16S, 18S and 28S). Moreover, two new species, D. pingmengensis sp. nov. He & Zong and D. gulinjingensis. sp. nov. Zong & He are described. Their validities are also supported by morphological features. Furthermore, D. sichuanensis Zhu & Shi, 2022 is treated as a junior synonym of D. guangxiensis Qin, Wang, Liu & Li, 2016 based on both morphological and molecular features.


Assuntos
Ortópteros , Masculino , Animais , Ortópteros/genética , Filogenia , Teorema de Bayes , Distribuição Animal , Estruturas Animais , Tamanho Corporal , Tamanho do Órgão , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA