Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 64(3): 292-307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095997

RESUMO

Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Pneumopatias/tratamento farmacológico , Nanopartículas/uso terapêutico , Animais , Tecnologia Biomédica , Ensaios Clínicos como Assunto , Terapia Genética , Humanos
2.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240596

RESUMO

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Assuntos
Indutores da Angiogênese/administração & dosagem , Sistemas de Liberação de Medicamentos , Proteína Forkhead Box M1/administração & dosagem , Fatores de Transcrição Forkhead/administração & dosagem , Hiperóxia/tratamento farmacológico , Nanopartículas , Alvéolos Pulmonares/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Indutores da Angiogênese/uso terapêutico , Animais , Animais Recém-Nascidos , Western Blotting , Feminino , Citometria de Fluxo , Proteína Forkhead Box M1/farmacologia , Proteína Forkhead Box M1/uso terapêutico , Fatores de Transcrição Forkhead/farmacologia , Fatores de Transcrição Forkhead/uso terapêutico , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
3.
Stress ; 23(1): 87-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31311393

RESUMO

Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly. The effects of stress hormones on immune cell CKA were also investigated under two in vitro co-incubation conditions, with all three hormones found to exert inhibitory effects on the CKA of PMNs and mononuclear cells. We showed that stress triggered the release of stress hormones which had profound inhibitory effects on the innate anticancer functions of PMNs. These results provide a possible explanation for the relationship between psychological stress and cancer incidence.


Assuntos
Granulócitos/fisiologia , Neoplasias/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Epinefrina/sangue , Epinefrina/fisiologia , Humanos , Hidrocortisona/sangue , Hidrocortisona/fisiologia , Norepinefrina/sangue , Norepinefrina/fisiologia
4.
Am J Respir Crit Care Med ; 200(8): 1045-1056, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199666

RESUMO

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Mutação , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Síndrome da Persistência do Padrão de Circulação Fetal/fisiopatologia , Alvéolos Pulmonares/anormalidades , Transdução de Sinais/genética , Animais , Humanos , Camundongos , Modelos Animais , Alvéolos Pulmonares/fisiopatologia
5.
Nanomedicine ; 14(2): 619-631, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269324

RESUMO

Myocardial infarction (MI), known to be rapidly progressed and fatal, necessitates a timely and effective intervention particularly within golden 24 h. The crux is to develop a therapeutic agent that can early target the infarct site with integrated therapeutic capacity. Finding the AT1 receptor being most over-expressed at 24 h after MI, we developed a nanovector (AT1-PEG-DGL) anchored with AT1 targeting peptide, and simultaneously armed it with specific microRNA-1 inhibitor (AMO-1) to attenuate cardiomyocyte apoptosis. In vivo imaging after IV administration demonstrated that AT1-PEG-DGL quickly accumulated in the MI heart during the desired early period, significantly outperforming the control group without AT1 targeting. Most importantly, a pronounced in-vivo anti-apoptosis effect was observed upon a single IV injection. Apoptotic cell death in the infarct border zone was significantly decreased and the myocardial infarct size was reduced by 64.1% as compared with that in MI control group, promising for early MI treatment.


Assuntos
Dendrímeros/química , Terapia Genética , MicroRNAs/antagonistas & inibidores , Infarto do Miocárdio/terapia , Nanopartículas/administração & dosagem , Receptor Tipo 1 de Angiotensina/química , Animais , Apoptose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Nanopartículas/química , Receptor Tipo 1 de Angiotensina/genética
6.
Bioconjug Chem ; 28(2): 330-335, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085270

RESUMO

Various biomimetic nanoparticles have been fabricated for cancer nanotheranostics with a diverse range of proteins. However, the operating mechanisms of these reactions are still unclear, especially on the interaction between metal ions and protein, the precise binding sites, and the existence format of nanoparticles. Assuming the shortening of the amino acids sequence into several, namely short peptides, it would be much easier to investigate the biomimetic reaction mechanism. In this study, a modular peptide, possessing Au3+ ion coordination motifs and a Gd3+ ion chelation sequence, is designed and synthesized. This peptide is experimentally found effective in site-specific biomimetic synthesis of paramagnetic fluorescent gold nanoclusters (pAuNCs) with a quantum yield of 6.8%, deep red emission at 676 nm, and potent relaxivity. The gel electrophoresis result declares that the two imaging motifs in pAuNCs are quite stable. In vivo fluorescence-magnetic resonance bimodal imaging show significant tumor enhancement by pAuNCs in tumor-bearing mice. In vivo biodistribution and toxicity studies reveal that pAuNCs can be gradually cleared from the body without damage. This study presents a modular peptide that can incubate multifunctional nanoparticles in a biomimetic fashion and hopefully provides a strategy for the investigation of the mechanism of protein-mediated biomimetic synthesis.


Assuntos
Biomimética , Meios de Contraste/química , Imagem Molecular/métodos , Peptídeos/química , Animais , Gadolínio/química , Ouro/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Peptídeos/farmacocinética , Distribuição Tecidual
7.
Nanotechnology ; 28(2): 025101, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27906685

RESUMO

Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.


Assuntos
Aptâmeros de Nucleotídeos , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ouro/química , Nanopartículas de Magnetita/química , Proteínas de Neoplasias/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/biossíntese , Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular/biossíntese
8.
Langmuir ; 31(8): 2576-83, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25692321

RESUMO

A unique synthesis was developed to immobilize Pd nanoparticles on pristine graphene (PG) sheets via a facile supercritical carbon dioxide route. Pristine graphene was obtained by sonication-assisted exfoliation of graphite in an organic solvent. Finely dispersed worm-like Pd nanoparticles are homogeneously deposited on the hydrophobic graphene surfaces. The combination of pristine graphene sheets and well-dispersed Pd nanoparticles provided large electrochemically active surface areas (ECSA) for both direct formic acid fuel cell (DFAFC) and methanol fuel cell (DMFC). The ECSA values are more than twice as large as those of reduced graphene oxide and carbon nanotube based counterparts or six times those of conventional XC-72 carbon black. Significant enhancements were also observed in the electrocatalytic activity and stability measurements. The excellent electrochemical property of Pd/PG is attributable to the well-preserved graphene structure that ensures electrical conductivity and stability of the composite. Its large surface area also allows for the deposition of small size and high dispersion of the Pd nanoparticles. This straightforward synthesis offers a new pathway for developing highly active electrocatalysts based on pristine graphene with fully optimized properties.


Assuntos
Técnicas Eletroquímicas , Fulerenos/química , Nanopartículas Metálicas/química , Paládio/química , Catálise , Fontes de Energia Elétrica , Formiatos/química , Metanol/química , Tamanho da Partícula , Propriedades de Superfície
9.
Bioact Mater ; 31: 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37593494

RESUMO

Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(ß-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders.

10.
Small ; 9(3): 446-56, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23047287

RESUMO

A multi-component nanosystem based on graphene and comprising individual cyclodextrins at its surface is assembled, creating hybrid structures enabling new and important functionalities: optical imaging, drug storage, and cell targeting for medical diagnosis and treatment. These nanohybrids are part of a universal system of interchangeable units, capable of mutilple functionalities. The surface components, made of individual ß-cyclodextrin molecules, are the "hosts" for functional units, which may be used as imaging agents, for anti-cancer drug delivery, and as tumor-specific ligands. Specifically, individual ß-cyclodextrin (ß-CD), with a known capability to host various molecules, is considered a module unit that is assembled onto graphene nanosheet (GNS). The cyclodextrin-functionalized graphene nanosheet (GNS/ß-CD) enables "host-guest" chemistry between the nanohybrid and functional "payloads". The structure, composition, and morphology of the graphene nanosheet hybrid have been investigated. The nanohybrid, GNS/ß-CD, is highly dispersive in various physiological solutions, reflecting the high biostability of cyclodextrin. Regarding the host capability, the nanohybrid is fully capable of selectively accommodating various biological and functional agents in a controlled fashion, including the antivirus drug amantadine, fluorescent dye [5(6)-carboxyfluorescein], and Arg-Gly-Asp (RGD) peptide-targeting ligands assisted by an adamantine linker. The loading ratio of 5(6)-carboxyfluorescein is as high as 110% with a drug concentration of 0.45 mg mL(-1). The cyclic RGD-functionalized nanohybrid exhibits remarkable targeting for HeLa cells.


Assuntos
Tecnologia Biomédica/métodos , Grafite/química , beta-Ciclodextrinas/química , Nanotecnologia/métodos
11.
Bioengineering (Basel) ; 10(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627808

RESUMO

Biochips, a novel technology in the field of biomolecular analysis, offer a promising alternative to conventional testing equipment. These chips integrate multiple functions within a single system, providing a compact and efficient solution for various testing needs. For biochips, a pattern-control micro-electrode-dot-array (MEDA) is a new, universally viable design that can replace microchannels and other micro-components. In a Micro Electrode Dot Array (MEDA), each electrode can be programmatically controlled or dynamically grouped, allowing a single chip to fulfill the diverse requirements of different tests. This capability not only enhances flexibility, but also contributes to cost reduction by eliminating the need for multiple specialized chips. In this paper, we present a visible biochip testing system for tracking the entire testing process in real time, and describe our application of the system to detect SARS-CoV-2.

12.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978671

RESUMO

A Cold Atmospheric Plasma (CAP) apparatus was designed and developed for SARS-CoV-2 killing as evaluated by pseudotyped viral infectivity assays. The reactive species generated by the plasma system was fully characterized by using Optical Emission Spectroscopy (OES) measurement under given conditions such as plasma power, flow rate, and treatment time. A variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) were identified from plasma plume with energies of 15-72 eV in the frequency range between 500-1000 nm. Systematic virus killing experiments were carried out, and the efficacy of CAP treatment in reducing SARS-CoV-2 viral infectivity was significant following treatment for 8 s, with further enhancement of killing upon longer exposures of 15-120 s. We correlated killing efficacy with the reactive species in terms of type, intensity, energy, and frequency. These experimental results demonstrate effective cold plasma virus killing via ROS and RNS under ambient conditions.

13.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676230

RESUMO

The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was found to be substantially higher than those of the discrete nanoparticle systems. The frequencies of the dominant relaxation mechanisms were determined by magnetic susceptibility measurements in the frequency range of 100 Hz-7 GHz. The loss mechanisms were identified in terms of Brownian relaxation (1 kHz-10 kHz) and gyromagnetic resonance of Fe3O4 (~1.12 GHz). It was observed that the microwave absorption of the Fe3O4 nanoparticles depend on the local environment surrounding the NPs, as well as the long-range dipole-dipole interactions. These significant findings will be profoundly important in magnetic hyperthermia medical therapeutics and energy applications.

15.
Front Oncol ; 13: 1112859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816948

RESUMO

Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.

16.
Biologics ; 17: 43-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969329

RESUMO

Introduction: Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods: npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results: With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion: In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.

17.
Nat Commun ; 14(1): 2560, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37137915

RESUMO

Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.


Assuntos
Células Endoteliais , Fibrose Pulmonar Idiopática , Camundongos , Animais , Humanos , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , DNA Complementar/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/toxicidade , Fatores de Transcrição Forkhead/metabolismo , Fibroblastos/metabolismo
18.
Small ; 8(5): 760-9, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22228696

RESUMO

In biomedical applications, polyethylene glycol (PEG) functionalization has been a major approach to modify nanocarriers such as nano-graphene oxide for particular biological requirements. However, incorporation of a PEG shell poses a significant diffusion barrier that adversely affects the release of the loaded drugs. This study addresses this critical issue by employing a redox-responsive PEG detachment mechanism. A PEGylated nano-graphene oxide (NGO-SS-mPEG) with redox-responsive detachable PEG shell is developed that can rapidly release an encapsulated payload at tumor-relevant glutathione (GSH) levels. The PEG shell grafted onto NGO sheets gives the nanocomposite high physiological solubility and stability in circulation. It can selectively detach from NGO upon intracellular GSH stimulation. The surface-engineered structures are shown to accelerate the release of doxorubicin hydrochloride (DXR) from NGO-SS-mPEG 1.55 times faster than in the absence of GSH. Confocal microscopy shows clear evidence of NGO-SS-mPEG endocytosis in HeLa cells, mainly accumulated in cytoplasm. Furthermore, upon internalization of DXR-loaded NGO with a disulfide-linked PEG shell into HeLa cells, DXR is effectively released in the presence of an elevated GSH reducing environment, as observed in confocal microscopy and flow cytometric experiments. Importantly, inhibition of cell proliferation is directly correlated with increased intracellular GSH concentrations due to rapid DXR release.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Grafite/química , Polietilenoglicóis/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Glutationa/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Oxirredução/efeitos dos fármacos
19.
Langmuir ; 28(48): 16605-13, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23145555

RESUMO

Quantum dots (QDs) have been widely used as fluorescent probes in cell-targeted imaging. However, nonspecific binding to cellular membranes has been a major challenge. In this study, a new approach is developed for effective reduction of nonspecific binding by bovine serum albumin (BSA)-coated QDs in cell targeting. The experimental results show efficient transfer of hydrophobic QDs from organic to aqueous phase in the presence of BSA aqueous solution under ultrasonication. This ultrasonication-based approach is facile, rapid, and efficient. Stabilization of QDs is mainly achieved by multiple mercapto groups in BSA macromolecules as multidentate ligands and partially by hydrophobic interaction between BSA and pending fatty ligands on QDs. The water solubility of QDs is enhanced by the surface amino and carboxyl groups, which also provide reaction sites for conjugation of targeting ligands. The BSA-coated QDs, with an overwhelming majority of hydrodynamic diameter size of ca. 18 nm, are colloidally stable under both acidic and basic conditions and found to exhibit strong fluorescent intensities. The nonspecific cellular binding is effectively reduced by BSA-coated QDs, compared with the mercaptopropionic acid (MPA)-coated CdTe QDs. BSA-coated QDs are further functionalized with cyclic Arg-Gly-Asp (cRGD) peptide. The cell assays indicate their high target-selectivity in integrin α(v)ß(3)-expressed cell imaging.


Assuntos
Engenharia , Imagem Molecular/métodos , Pontos Quânticos , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Camundongos , Peptídeos Cíclicos/metabolismo , Estabilidade Proteica , Soroalbumina Bovina/química , Especificidade por Substrato , Propriedades de Superfície
20.
Biomacromolecules ; 13(4): 1024-34, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22443494

RESUMO

A dual stimulus-responsive mPEG-SS-PLL(15)-glutaraldehyde star (mPEG-SS-PLL(15)-star) catiomer is developed and biologically evaluated. The catiomer system combines redox-sensitive removal of an external PEG shell with acid-induced escape from the endosomal compartment. The design rationale for PEG shell removal is to augment intracellular uptake of mPEG-SS-PLL(15)-star/DNA complexes in the presence of tumor-relevant glutathione (GSH) concentration, while the acid-induced dissociation is to accelerate the release of genetic payload following successful internalization into targeted cells. Size alterations of complexes in the presence of 10 mM GSH suggest stimulus-induced shedding of external PEG layers under redox conditions that intracellularly present in the tumor microenvironment. Dynamic laser light scattering experiments under endosomal pH conditions show rapid destabilization of mPEG-SS-PLL(15)-star/DNA complexes that is followed by facilitating efficient release of encapsulated DNA, as demonstrated by agarose gel electrophoresis. Biological efficacy assessment using pEGFP-C1 plasmid DNA encoding green fluorescence protein and pGL-3 plasmid DNA encoding luciferase as reporter genes indicate comparable transfection efficiency of 293T cells of the catiomer with a conventional polyethyleneimine (bPEI-25k)-based gene delivery system. These experimental results show that mPEG-SS-PLL(15)-star represents a promising design for future nonviral gene delivery applications with high DNA binding ability, low cytotoxicity, and high transfection efficiency.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Técnicas de Transferência de Genes , Vetores Genéticos/química , Iminas/química , Polilisina/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/farmacologia , Dissulfetos/farmacologia , Vetores Genéticos/síntese química , Vetores Genéticos/farmacologia , Glutaral/química , Glutaral/farmacologia , Células HEK293 , Células HeLa , Humanos , Iminas/farmacologia , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polilisina/genética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA