Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 16140-16155, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859250

RESUMO

In this paper, high-order LP modes based Sagnac interference for temperature sensing are proposed and investigated theoretically. Based on the specific high-order LP modes excited through the mode selective couplers (MSCs), we design a stress-induced Panda-type few-mode fiber (FMF) supporting 4 LP modes and construct a Sagnac interferometer to achieve a highly sensitive temperature sensor. The performances of different LP modes (LP01, LP11, LP21, and LP02) are explored under a single Sagnac interferometer and paralleled Sagnac interferometers, respectively. LP21 mode has the highest temperature sensitivity. Compared with fundamental mode (LP01), the temperature sensitivity based on LP21 mode improved by 18.2% at least. In addition, a way to achieve the enhanced optical Vernier effect is proposed. It should be noted that two Sagnac loops are located in two temperature boxes of opposite variation trends, respectively. Both two Sagnac interferometers act as the sensing element, which is different from the traditional optical Vernier effect. The temperature sensitivity of novel enhanced optical Vernier effect is magnified by 8 times, which is larger than 5 times the traditional Vernier effect. The novel approach avoids measurement errors and improves the stability of the sensing system. The focus of this research is on high-order mode interference, which has important guiding significance for the development of highly sensitive Sagnac sensors.

2.
Materials (Basel) ; 13(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674500

RESUMO

Electrocatalysts play an important role in oxygen reduction reaction (ORR) in promoting the reaction process. Although commercial Pt/C exhibits excellent performance in ORR, the low duration, high cost, and poor methanol tolerance seriously restrict its sustainable development and application. TinO2n-1 (3 ≤ n ≤ 10) is a series of titanium sub-oxide materials with excellent electrical conductivity, electrochemical activity, and stability, which have been widely applied in the field of energy storage and catalysis. Herein, we design and synthesize Ti4O7/Ti3O5 (T4/T3) dual-phase nanofibers with excellent ORR catalytic performance through hydrothermal growth, which is followed by a precisely controlled calcination process. The H2Ti3O7 precursor with uniform size can be first obtained by optimizing the hydrothermal growth parameters. By precisely controlling the amount of reducing agent, calcination temperature, and holding time, the T4/T3 dual-phase nanofibers with uniform morphology and coherent interfaces can be obtained. The orientation relationships between T4 and T3 are confirmed to be [ 001 ] T 3 / / [ 031 ] T 4 , ( 100 ) T 3 / / ( 92 6 ¯ ) T 4 , and ( 010 ) T 3 / / ( 1 2 ¯ 6 ) T 4 , respectively, based on comprehensive transmission electron microscopy (TEM) investigations. Furthermore, such dual-phase nanofibers exhibit the onset potential and half-wave potential of 0.90 V and 0.75 V as the ORR electrocatalysts in alkaline media, respectively, which illustrates the excellent ORR catalytic performance. The rotating ring-disk electrode (RRDE) experiment confirmed the electron transfer number of 3.0 for such catalysts, which indicates a mixture of two electron and four electron transfer reaction pathways. Moreover, the methanol tolerance and cycling stability of the catalysts are also investigated accordingly.

3.
Nanoscale ; 12(46): 23636-23644, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33216101

RESUMO

Lithium sulfur batteries are expected to be one of the most promising energy storage systems due to their high energy density, low cost and environmental friendliness. However, the shuttle effect of lithium polysulfides severely hampers their practical application. The design of the sulfur cathode is one of the most important approaches to overcome the problem. In this work, MoS2 nanosheets have been successfully grown on the surface of hollow carbon spheres (HCS) to obtain MoS2@HCS nanocomposites with uniform morphology. The growth behavior of MoS2 nanosheets was also proved by adjusting the pore structure of HCS. With a sulfur loading of 74%, the MoS2@HCS/S cathode exhibits a high initial reversible capacity of 1419 mA h g-1 at a current density of 0.1 C and remains at 1010 mA h g-1 after 100 cycles. Even at 0.5 C, a capacity of 795 mA h g-1 can be retained after 600 cycles, corresponding to a capacity retention rate of 63.1%. By adjusting the concentration of the sulfur source, the relationship between different growth quantities of MoS2 and the cycling performance of the battery was also investigated. The excellent electrochemical performance of the MoS2@HCS/S cathode can be fully attributed to its physical and chemical double adsorption effect on lithium polysulfides, which has been confirmed through the visible adsorption and X-ray Photoelectron Spectroscopy (XPS) experiments. This work provides a simple design concept and method to synthesize a nanocomposite-based sulfur host for high performance lithium sulfur batteries.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31428179

RESUMO

OBJECTIVE: To investigate the effects of Gegen Dingxuan capsule on behavior, X-ray signs of the cervical spine, and levels of norepinephrine (NE), nitric oxide (NO), endothelin (ET-1), and calcitonin gene-related peptide (CGRP) in the plasma of a rat model of cervical vertigo and additionally to clarify the underlying mechanisms of action. METHOD: A total of 40 male SPF Sprague-Dawley rats were randomly assigned to blank control, model, Sibelium, and Gegen Dingxuan capsule groups, with 10 rats in each group. A rat model of cervical vertigo was produced by physically damaging the cervical spine, thereby perturbing its stability. After cervical spine surgery, rats in the Sibelium and Gegen Dingxuan capsule groups were administered Sibelium and Gegen Dingxuan capsule, respectively. After 4 and 8 weeks of administration, balance beam test was used to assess behavior, lateral X-ray images of the cervical spine were taken and scored, and the plasma levels of NE, NO, ET-1, and CGRP were measured. RESULTS: After 4 and 8 weeks of drug administration, the balance beam test scores in the Gegen Dingxuan capsule group were significantly higher than those in the Sibelium group. The radiographic scores were significantly lower in the Gegen Dingxuan capsule group than those in the Sibelium group at 8 weeks. Plasma NE, NO, ET-1 levels, and ET-1/CGRP ratio were significantly decreased in the Gegen Dingxuan capsule group compared with the model group. No significant difference was found between the Sibelium and Gegen Dingxuan capsule groups. Plasma CGRP levels were significantly increased in the Gegen Dingxuan capsule group compared with the model group and were significantly decreased compared with the Sibelium group. CONCLUSIONS: Gegen Dingxuan capsule improves behavior, radiographic scores, reduces plasma levels of NE, NO, ET-1, and the ET-1/CGRP ratio, and increases plasma CGRP levels. Gegen Dingxuan capsule may improve outcome in the rat model of cervical vertigo by ameliorating cervical facet joint disorder, relieving cervical muscle spasm and vasospasm, increasing blood supply, and regulating humoral factor levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA