RESUMO
Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Temperatura , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocótilo/genética , Transativadores/genéticaRESUMO
Ag-assisted chemical etching (AgACE) is a low-cost method to produce silicon nanowires (SiNWs) for photoelectric applications. Structure parameters of SiNWs have great impact on their optical and photoelectric properties, which are worth studying for fabricating high-performance devices. However, array density of SiNWs via AgACE, as an important structural parameter, has not been sufficiently investigated. Here, array density effect on the optical and photoelectric properties of SiNWs is experimentally investigated. SiNW arrays with different densities (silicon occupation ratio of 7%-34.5%) were prepared through controlling the reaction time of silicon wafers in the seed solution (tseed). The SiNW array with atseedof 90 s shows optimum light absorption over 98% in the wavelength range of 300-1000 nm, though all the samples have light absorption over 95% due to the light trapping effect of nanowire array structure. In addition, the SiNW array with atseedof 90 s exhibits the best photoelectric property. SiNW arrays with shortertseedand higher density suffer more surface recombination, harming the photoelectric property. In SiNW arrays with longertseedthan 90 s and lower density, some SiNWs topple down and break, which has an adverse effect on transport and collection of carriers. These results indicate that the array density of SiNWs via AgACE has obvious effect on their photoelectric property. SiNW arrays via AgACE with atseedof 90 s are ideal for photoelectric devices. This work is potential to guide SiNW fabrication for photoelectric applications.
RESUMO
Silicon-based field effect transistor (FET) sensors with high sensitivity are emerging as powerful sensors for detecting chemical/biological species. Strain engineering has been demonstrated as an effective means to improve the performance of Si-based devices. However, the strain effect on the field-effect sensing property of silicon materials has not been studied yet. Here, we investigate the strain effect on the field-effect sensing property of silicon wires by taking humidity sensing as an example. The humidity sensitivity of FET sensors based on silicon wires increases with increasing tensile strain but decreases with increasing compressive strain. The sensitivity is very responsive to strain with an enhancement factor of 67 for tensile strain. Theoretical analysis shows that the sensitivity variation under different strains is mainly attributed to the change in adsorption energy between silicon wires and water molecules. This work indicates that strain engineering can be an effective route to modulate the field-effect sensing property of Si wires for constructing highly sensitive Si-based FET sensors.
RESUMO
In view of the advantages of CFD technology in the simulation of small and medium-scale chemical hazard diffusion, one near-field prediction model of chemical hazard diffusion named CHDNFP is constructed based on CFD technology, and the accuracy and efficiency of the model are improved by improved differential evolution algorithm (DEA) and fireworks algorithm (FWA). Firstly, based on the component conservation equation, momentum conservation equation, and turbulence control equation, CHDNFP model is constructed, whose basic solution process is proposed from three aspects: non-uniform mesh refinement in diffusion space, model discretization, and iterative solution of control equation. Secondly, comprehensive considering the global search ability, local search ability, and convergence characteristics of integrated DEA and FWA, a hybrid optimization algorithm IDEFWA is designed, which is suitable for predictive model solving. Finally, the CHDNFP model and IDEFWA are verified by tracer experiments. The result shows that: IDEFWA can reduce the relative root mean square error between the predicted concentration field and the observed concentration field to about 25%, with the calculation accuracy of 10-19 and the standard deviation accuracy of 10-9; compared with ABCA and GA, IDEFWA can get more accurate solutions faster under the same algebraic and population conditions; the calculation accuracy of CHDNFP-IDEFWA and PISOFOAM is almost the same, where the relative difference is about 3%, and CHDNFP-IDEFWA has better calculation accuracy than PISOFOAM, which is improved by about 26.05%.
Assuntos
Algoritmos , Monitoramento Ambiental , Simulação por Computador , DifusãoRESUMO
The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1â¼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Análise por Conglomerados , Regulação para Baixo/genética , Congelamento , Edição de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mutação/genética , Motivos de Nucleotídeos/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
Objective: This study aims to establish a prediction model of foetal umbilical vein standardised blood flow volume (sQuv) on estimated foetal weight (EFW) in the third trimester. Methods: A case-cohort study involving 200 eligible normal foetuses was conducted at the Ultrasound Department of Longquanyi District of Maternity and Child Healthcare Hospital between June 1, 2020 and December 31, 2021. Ultrasound measurements were taken at two separate intervals to assess EFW and the rate of EFW (rEFW) [first: between 28â w and 33â w6d of gestational age (GA); second: after 4-6 weeks]. Umbilical vein blood flow volume (Quv) and sQuv (normalised with EFW) were calculated only during the initial measurement. Using general linear regression, a prediction model for EFW based on GA and sQuv was developed, with the gestational week employed as a calibration scalar and validated using linear regression cross-validation. Results: In the third trimester, EFW exhibited significant correlations with GA, abdominal circumference (AC), head circumference (HC) and Quv (all ρ > 0.6, P < 0.001). Furthermore, the rEFW showed significant correlations with Quv and sQuv (all ρ > 0.6, P < 0.001). A linear regression equation was established using a general linear regression model: rEFW = 0.32689 × sQuv. Additionally, a foetal weight prediction model (EFW = -2,554.6770 + 0.9655 × sQuv + 129.6916 × GA) was established using sQuv. The above two formulas were cross-validated by intra-group linear regression and proved to be of good efficacy. Conclusions: In the third trimester, EFW displayed significant correlations with GA, AC, HC and Quv. Additionally, the rEFW exhibited significant correlations with Quv and sQuv. The sQuv during the third trimester has predictive value for foetal weight, serving as an early warning indicator.
RESUMO
Well-functionalized electronic materials, such as silicon, in a stretchable format are desirable for high-performance wearable electronics. However, obtaining Si materials that meet the required stretchability of over 100% for wearable applications remains a significant challenge. Herein, a rational design strategy is proposed to achieve freestanding serpentine Si strips (FS-Si strips) with ultrahigh stretchability, fulfilling wearable requirements. The self-supporting feature makes the strips get rid of excessive constraints from substrates and enables them to deform with the minimum strain energy. Micrometer-scale thicknesses enhance robustness, and large diameter-to-width ratios effectively reduce strain concentration. Consequently, the FS-Si strips with the optimum design could withstand 300% stretch, bending, and torsion without fracturing, even under rough manual operation. They also exhibit excellent stability and durability over 50,000 cycles of 100% stretching cycles. For wearable applications, the FS-Si strips can maintain conformal contact with the skin and have a maximum stretchability of 120%. Moreover, they are electrically insensitive to large deformations, which ensure signal stability during their daily use. Combined with mature processing techniques and the excellent semiconductor properties of Si, FS-Si strips are promising core stretchable electronic materials for wearable electronics.
RESUMO
Hydrovoltaic devices (HDs) based on silicon nanowires (SiNWs) have attracted significant attention due to their potential of high output power and good compatibility with Si-based photovoltaic devices for integrated power systems. However, it remains a major challenge to further improve the output performance of SiNW HDs for practical applications. Here, a new strategy to modify the surface of SiNWs with siloxane molecules is proposed to improve the output performance of the SiNW HDs. After modification, both the open-circuit voltage (Voc) and short-circuit current density (Jsc) of n-type SiNW HDs can be improved by approximately 30%, while the output power density can be greatly increased by over 200%. With siloxane modification, Si-OH groups on the surface of typical SiNWs are replaced by Si-O-Si chemical bonds that have a weaker electron-withdrawing capability. More free electrons in n-type SiNWs are liberated from surface bound states and participate in directed flow induced by water evaporation, thereby improving the output performance of HDs. The improved performance is significant for system integration applications as it reduces the number of required devices. Three siloxane-modified SiNW HDs in series are able to drive a 2 V light-emitting diode (LED), whereas four unmodified devices in series are initially needed for the same task. This work provides a simple yet effective strategy for surface modification to improve the output performance of SiNW HDs. Further research into the effect of different surface modifications on the performance of SiNW HDs will greatly promote their performance enhancement and practical applications.
RESUMO
We used a monophyletic group of four natural populations of Arabidopsis thaliana expanded from a single ancestor along the Yangtze River c. 90,000 yr ago to study the molecular mechanism of the divergence in their freezing tolerance, in order to gain an insight into the genetic basis of their local adaption to low temperatures. Freezing tolerance assays, measurements of metabolites in the raffinose biosynthesis pathway and transactivation-activity assays of variation in forms of cold-responsive transcription factors were conducted on the four populations. Quantitative trait locus mapping was adopted with F2 populations of the most- and least freezing-tolerant populations. The degree of freezing tolerance among the four populations was negatively correlated with the lowest monthly average temperature of January in their native habitats, and positively correlated to the expression level of some cold-regulated genes. We identified a major locus harboring three cold-responsive transcription factor genes CBF1-3, and found a nucleotide insertion in CBF2 in all populations except SXcgx, which generated a dysfunctional CBF2 protein. The CBF2 in SXcgx experienced a stronger natural selection in the cooler environment after CBF3 lost its response to low temperature, which possibly reflects a local adaptation of these populations during the expansion from a common ancestor.
Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Congelamento , Genes de Plantas/genética , Variação Genética , Rios , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , China , Mapeamento Cromossômico , Dissacarídeos/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas , Rafinose/metabolismo , Fatores de Tempo , Ativação Transcricional/genéticaRESUMO
Fertilization of an egg by multiple sperm (polyspermy) leads to lethal genome imbalance and chromosome segregation defects. In Arabidopsis thaliana, the block to polyspermy is facilitated by a mechanism that prevents polytubey (the arrival of multiple pollen tubes to one ovule). We show here that FERONIA, ANJEA, and HERCULES RECEPTOR KINASE 1 receptor-like kinases located at the septum interact with pollen tube-specific RALF6, 7, 16, 36, and 37 peptide ligands to establish this polytubey block. The same combination of RALF (rapid alkalinization factor) peptides and receptor complexes controls pollen tube reception and rupture inside the targeted ovule. Pollen tube rupture releases the polytubey block at the septum, which allows the emergence of secondary pollen tubes upon fertilization failure. Thus, orchestrated steps in the fertilization process in Arabidopsis are coordinated by the same signaling components to guarantee and optimize reproductive success.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Peptídeos/metabolismo , Tubo Polínico/fisiologia , Transdução de Sinais , Fertilização , Ligantes , Óvulo Vegetal/fisiologia , Fosfotransferases/metabolismo , Pólen/metabolismo , Tubo Polínico/metabolismo , Polinização , Proteínas Quinases/metabolismoRESUMO
Single-crystalline silicon (sc-Si) is the dominant semiconductor material for the modern electronics industry. Despite their excellent photoelectric and electronic properties, the rigidity, brittleness, and nontransparency of commonly used silicon wafers limit their application in transparent flexible optoelectronics. In this study, a new type of Si microstructure, named single-crystalline Si frameworks (sc-SiFs), is developed, through a combination of wet-etching and microfabrication technologies. The sc-SiFs are self-supported, flexible, lightweight, tailorable, and highly transparent. They can withstand a small bending radius of less than 0.5 mm and have a transparency of up to 96% in all wavelength ranges, owing to the hollowed-out framework structures. Thus, the sc-SiFs provide a new platform for high-performance transparent flexible optoelectronics. Taking transparent flexible photodetectors (TFPDs) as an example, substrate-free and self-driven TFPDs are achieved based on the sc-SiFs. The devices exhibit superior performance compared to other reported TFPDs and reveal the great potential for integrated optoelectronic applications. The development of sc-SiFs paves the way toward the fabrication of high-performance transparent flexible devices for a host of applications, including e-skins, the Internet of Things, transparent flexible displays, and artificial visual cortexes.
RESUMO
Chromium is an essential element that is required for the normal physiology but can be toxic to humans above a certain level. In spite of growing interest in research on chromium exposure to human health consensus about its effect on human, semen quality has not been achieved. The aim of the present study is to evaluate the impact of chromium exposure on semen parameters. A total of 760 males attending andrology laboratory of Tongji Hospital, Wuhan, for routine semen analysis were enrolled and requested to provide semen and urine samples. The urine level of chromium was evaluated using inductively coupled plasma mass spectrometry (ICP-MS), and computer-assisted semen analysis (CASA) was applied to examine semen parameters. Associations between semen parameters and urinary chromium were analyzed by means of multivariate linear regression analysis. Multivariate analysis showed a negative association between the urinary concentrations of chromium and progressive motility (ß = - 0.014, p = 0.040) and total motility (ß = - 1.077, p = 0.048), while other semen parameters did not show any statistically significant changes. Urinary chromium could influence semen quality parameters and impair male fecundity.
Assuntos
Andrologia , Análise do Sêmen , Cromo , Estudos Transversais , Humanos , Masculino , Sêmen , Motilidade dos Espermatozoides , EspermatozoidesRESUMO
Both cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are known reproductive toxicants, but their co-exposure and interaction effect on semen quality particularly in nonsmokers remain unknown. We included 333 nonsmoking men and analyzed their urine and semen samples for heavy metals and PAH metabolites. Restricted cubic spline models were used to explore the dose-response relationship between each OH-PAHs, Cd, and semen quality parameters; the generalized linear model was performed to examine the interaction of each urinary OH-PAH metabolite and Cd concentration on semen quality. Also, stratified analysis was applied to further illustrate the independent effect of PAHs on semen quality parameters in low and high concentration Cd subgroups. The dose-response and interaction effect of PAHs and Cd on male semen quality was observed. Stratified analysis in the high concentration Cd subgroup showed a negative association of 1-OHPyr concentration with semen motility. Our findings indicate that Cd not only modifies the association between PAHs and semen quality but can also exacerbate the toxic effect of pyrene on semen quality parameters. However, further studies with larger samples are needed to confirm the findings.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Análise do Sêmen , Cádmio , Humanos , Masculino , não Fumantes , Motilidade dos EspermatozoidesRESUMO
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Assuntos
Purificação da Água , Fenômenos Químicos , Filtração , Floculação , Membranas Artificiais , Osmose , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation.