Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
2.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516571

RESUMO

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Feminino , Humanos , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Tropismo Viral , Redução de Peso
3.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713597

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
4.
J Immunol ; 213(2): 204-213, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38856712

RESUMO

Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.


Assuntos
Quirópteros , Interferon Tipo I , Quirópteros/imunologia , Quirópteros/genética , Quirópteros/virologia , Animais , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Humanos , Antivirais , Imunidade Inata/genética , Filogenia
5.
Nature ; 579(7798): 270-273, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32015507

RESUMO

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Surtos de Doenças , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais/sangue , Betacoronavirus/metabolismo , Betacoronavirus/ultraestrutura , COVID-19 , Linhagem Celular , China/epidemiologia , Chlorocebus aethiops , Feminino , Genoma Viral/genética , Humanos , Masculino , Peptidil Dipeptidase A/metabolismo , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Homologia de Sequência do Ácido Nucleico , Síndrome Respiratória Aguda Grave , Células Vero
6.
J Virol ; 97(9): e0039523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655938

RESUMO

While the spike proteins from severe acute respiratory syndrome coronaviruses-1 and 2 (SARS-CoV and SARS-CoV-2) bind to host angiotensin-converting enzyme 2 (ACE2) to infect cells, the majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples, leading to the assumption these viruses pose little risk to humans. We have previously shown how spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings into a virus isolation protocol and recovered two new ACE2-dependent viruses, RsYN2012 and RsYN2016A, as well as an ACE2-independent virus, RsHuB2019A. Although our stocks of RsHuB2019A rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry factors that support bat sarbecoviruses. Electron microscopy revealed that ACE2-independent sarbecoviruses have a prominent spike corona and share similar morphology to other coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and shed light on the intricacies of coronavirus isolation and propagation in vitro. IMPORTANCE Several coronaviruses have been transmitted from animals to people, and 20 years of virus discovery studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor understanding of the in vitro requirements for their propagation. Here, we built on our growing body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have developed a virus isolation protocol that allows for the exploration of these understudied viruses. Our protocol is robust and practical, leading to successful isolation of more sarbecoviruses than previous approaches and from field samples that had been collected over a 10-year longitudinal study.


Assuntos
Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Quirópteros , Receptores Virais , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/virologia , População do Leste Asiático , Estudos Longitudinais , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tripsina , Betacoronavirus/isolamento & purificação , Zoonoses
7.
J Virol ; 97(2): e0171922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688655

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Assuntos
COVID-19 , Especificidade de Hospedeiro , Pangolins , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , China , COVID-19/transmissão , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Transgênicos , Pangolins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Suínos , Quirópteros
8.
J Virol ; 97(10): e0091623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772826

RESUMO

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Endopeptidases , Glicoproteínas , Doenças dos Suínos , Suínos , Internalização do Vírus , Animais , Alphacoronavirus/fisiologia , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Endopeptidases/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Suínos/virologia , Doenças dos Suínos/enzimologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Internalização do Vírus/efeitos dos fármacos , Tunicamicina/farmacologia , Glicosilação
9.
J Virol ; 97(9): e0079023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37607058

RESUMO

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Assuntos
Quirópteros , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos/virologia , Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Camundongos Endogâmicos BALB C , COVID-19/mortalidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/mortalidade , Inoculações Seriadas , Antivirais/farmacologia , Antivirais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Zoonoses Virais/tratamento farmacológico , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/virologia , Envelhecimento , Avaliação Pré-Clínica de Medicamentos
10.
Nature ; 556(7700): 255-258, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618817

RESUMO

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Assuntos
Alphacoronavirus/isolamento & purificação , Alphacoronavirus/patogenicidade , Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Suínos/virologia , Alphacoronavirus/classificação , Alphacoronavirus/genética , Doenças dos Animais/transmissão , Animais , Biodiversidade , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Diarreia/patologia , Diarreia/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Genoma Viral/genética , Humanos , Jejuno/patologia , Jejuno/virologia , Filogenia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/veterinária , Síndrome Respiratória Aguda Grave/virologia , Análise Espaço-Temporal , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
11.
J Virol ; 96(24): e0117322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448798

RESUMO

White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.


Assuntos
Penaeidae , Fatores de Virulência , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Fatores de Virulência/genética , Internalização do Vírus
12.
J Virol ; 96(17): e0006522, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993737

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently emerging bat-borne coronavirus responsible for high mortality rates in piglets. In vitro studies have indicated that SADS-CoV has a wide tissue tropism in different hosts, including humans. However, whether this virus potentially threatens other animals remains unclear. Here, we report the experimental infection of wild-type BALB/c and C57BL/6J suckling mice with SADS-CoV. We found that mice less than 7 days old are susceptible to the virus, which caused notable multitissue infections and damage. The mortality rate was the highest in 2-day-old mice and decreased in older mice. Moreover, a preliminary neuroinflammatory response was observed in 7-day-old SADS-CoV-infected mice. Thus, our results indicate that SADS-CoV has potential pathogenicity in young hosts. IMPORTANCE SADS-CoV, which likely has originated from bat coronaviruses, is highly pathogenic to piglets and poses a threat to the swine industry. Little is known about its potential to disseminate to other animals. No efficient treatment is available, and the quarantine strategy is the only preventive measure. In this study, we demonstrated that SADS-CoV can efficiently replicate in suckling mice younger than 7 days. In contrast to infected piglets, in which intestinal tropism is shown, SADS-CoV caused infection and damage in all murine tissues evaluated in this study. In addition, neuroinflammatory responses were detected in some of the infected mice. Our work provides a preliminary cost-effective model for the screening of antiviral drugs against SADS-CoV infection.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Diarreia , Camundongos , Doenças dos Suínos , Alphacoronavirus/patogenicidade , Animais , Quirópteros/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diarreia/complicações , Diarreia/veterinária , Diarreia/virologia , Humanos , Camundongos/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/complicações , Doenças Neuroinflamatórias/veterinária , Doenças Neuroinflamatórias/virologia , Suínos/virologia , Doenças dos Suínos/virologia
13.
J Virol ; 96(15): e0095822, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852351

RESUMO

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Assuntos
Evolução Molecular , Coronavírus da Síndrome Respiratória do Oriente Médio , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/virologia , Linhagem Celular , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Receptores Virais/metabolismo , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
J Virol ; 96(8): e0016922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343762

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Assuntos
Vacinas contra COVID-19 , Infecções por Coronavirus , Proteção Cruzada , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Quirópteros , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Produtos Inativados/imunologia , Zoonoses Virais/prevenção & controle
15.
J Virol ; 96(9): e0003822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35420442

RESUMO

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Assuntos
COVID-19 , Pulmão , Neutrófilos , Animais , COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/virologia , Linfopenia/virologia , Camundongos , Neutrófilos/imunologia , SARS-CoV-2 , Baço/patologia , Baço/virologia
16.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32699095

RESUMO

The Chinese horseshoe bat (Rhinolophus sinicus), reservoir host of severe acute respiratory syndrome coronavirus (SARS-CoV), carries many bat SARS-related CoVs (SARSr-CoVs) with high genetic diversity, particularly in the spike gene. Despite these variations, some bat SARSr-CoVs can utilize the orthologs of the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), for entry. It is speculated that the interaction between bat ACE2 and SARSr-CoV spike proteins drives diversity. Here, we identified a series of R. sinicus ACE2 variants with some polymorphic sites involved in the interaction with the SARS-CoV spike protein. Pseudoviruses or SARSr-CoVs carrying different spike proteins showed different infection efficiencies in cells transiently expressing bat ACE2 variants. Consistent results were observed by binding affinity assays between SARS-CoV and SARSr-CoV spike proteins and receptor molecules from bats and humans. All tested bat SARSr-CoV spike proteins had a higher binding affinity to human ACE2 than to bat ACE2, although they showed a 10-fold lower binding affinity to human ACE2 compared with that of their SARS-CoV counterpart. Structure modeling revealed that the difference in binding affinity between spike and ACE2 might be caused by the alteration of some key residues in the interface of these two molecules. Molecular evolution analysis indicates that some key residues were under positive selection. These results suggest that the SARSr-CoV spike protein and R. sinicus ACE2 may have coevolved over time and experienced selection pressure from each other, triggering the evolutionary arms race dynamics.IMPORTANCE Evolutionary arms race dynamics shape the diversity of viruses and their receptors. Identification of key residues which are involved in interspecies transmission is important to predict potential pathogen spillover from wildlife to humans. Previously, we have identified genetically diverse SARSr-CoVs in Chinese horseshoe bats. Here, we show the highly polymorphic ACE2 in Chinese horseshoe bat populations. These ACE2 variants support SARS-CoV and SARSr-CoV infection but with different binding affinities to different spike proteins. The higher binding affinity of SARSr-CoV spike to human ACE2 suggests that these viruses have the capacity for spillover to humans. The positive selection of residues at the interface between ACE2 and SARSr-CoV spike protein suggests long-term and ongoing coevolutionary dynamics between them. Continued surveillance of this group of viruses in bats is necessary for the prevention of the next SARS-like disease.


Assuntos
Coevolução Biológica , Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , Animais , Sítios de Ligação , Quirópteros/classificação , Quirópteros/genética , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética , Células HeLa , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Emerg Infect Dis ; 26(4): 773-777, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187506

RESUMO

We detected Crimean-Congo hemorrhagic fever virus infections in 4 provinces of Pakistan during 2017-2018. Overall, seroprevalence was 2.7% in humans and 36.2% in domestic livestock. Antibody prevalence in humans was highest in rural areas, where increased contact with animals is likely.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Humanos , Gado , Paquistão/epidemiologia , Estudos Soroepidemiológicos
19.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32342578

RESUMO

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Assuntos
Betacoronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , COVID-19 , Infecções por Coronavirus , Surtos de Doenças , Humanos , Pandemias , Pneumonia Viral , SARS-CoV-2
20.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669833

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrelluscoronavirus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV.IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Evolução Molecular , Genoma Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Quirópteros/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Especificidade de Hospedeiro , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Filogenia , Receptores Virais/genética , Homologia de Sequência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA