RESUMO
Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.
Assuntos
Aterosclerose/imunologia , Colesterol/biossíntese , Desmosterol/metabolismo , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Transcriptoma , Animais , Aterosclerose/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Células Espumosas/imunologia , Técnicas de Silenciamento de Genes , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismoRESUMO
Cells regularly repair numerous mutations. However, the effect of CRISPR/Cas9-induced dsDNA breaks on the repair processes of naturally occurring genome-wide mutations is unclear. In this study, we used TSCE5 cells with the heterozygous thymidine kinase genotype (TK+/-) to examine these effects. We strategically inserted the target sites for guide RNA (gRNA)/Cas9 and I-SceI into the functional allele and designed the experiment such that deletions of > 81 bp or base substitutions within exon five disrupted the TK gene, resulting in a TK-/- genotype. TSCE5 cells in the resting state exhibited 16 genome-wide mutations that affected cellular functions. After gRNA/Cas9 editing, these cells produced 859 mutations, including 67 high-impact variants that severely affected cellular functions under standard culture conditions. Mutation profile analysis indicated a significant accumulation of C to A substitutions, underscoring the widespread induction of characteristic mutations by gRNA/Cas9. In contrast, gRNA/Cas9-edited cells under conditions of Sâ¼G2/M arrest and cyclin-dependent kinase 1 inhibition showed only five mutations. Transcriptomic analysis revealed the downregulation of DNA replication genes and upregulation of alternative DNA repair genes, such as zinc finger protein 384 (ZNF384) and dual specificity phosphatase, under Sâ¼G2/M conditions. Additionally, activation of nucleotide and base excision repair gene, including O-6-methylguanine-DNA methyltransferase and xeroderma pigmentosum complementation group C, was observed. This study highlights the profound impact of CRISPR/Cas9 editing on genome-wide mutation processes and underscores the emergence of novel DNA repair pathways. Finally, our findings provide significant insights into the maintenance of genome integrity during genome editing.
Assuntos
Proteína Quinase CDC2 , Sistemas CRISPR-Cas , Pontos de Checagem do Ciclo Celular , Reparo do DNA , Edição de Genes , Mutação , Humanos , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular/genética , Edição de Genes/métodos , Timidina Quinase/genética , Timidina Quinase/metabolismoRESUMO
Stimulator of interferon genes (STING), a homodimeric membrane receptor localized in the endoplasmic reticulum, plays a pivotal role in signaling innate immune responses. Inhibitors and proteolysis-targeting chimeras (PROTACs) targeting STING are promising compounds for addressing autoinflammatory and autoimmune disorders. In this study, we used a minimal covalent handle recently developed as the ligand portion of an E3 ligase. The engineered STING degrader with a low molecular weight compound covalently binds to STING and E3 ligase. Degrader 2 showed sustained STING degradation activity at lower concentrations (3 µM, 48 h, about 75 % degradation) compared to a reported STING PROTAC, SP23. This discovery holds significance for its potential in treating autoinflammatory and autoimmune diseases, offering promising avenues for developing more efficacious STING-targeted therapies.
Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Proteólise , Ligantes , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Pterostilbene (PTS), which is abundant in blueberries, is a dimethyl derivative of the natural polyphenol resveratrol (RES). Several plant species, including peanuts and grapes, also produce PTS. Although RES has a wide range of health benefits, including anti-cancer properties, PTS has a robust pharmacological profile that includes a better intestinal absorption and an increased hepatic stability compared to RES. Indeed, PTS has a higher bioavailability and a lower toxicity compared to other stilbenes, making it an attractive drug candidate for the treatment of various diseases, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. We previously reported that RES serves as a substrate for tyrosinase, producing an o-quinone metabolite that is highly cytotoxic to melanocytes. The present study investigated whether PTS may also be metabolized by tyrosinase, similarly to RES. PTS was oxidized as a substrate by tyrosinase to form an o-quinone, which reacted with thiols, such as N-acetyl-L-cysteine, to form di- and tri-adducts. We also confirmed that PTS was taken up and metabolized by human tyrosinase-expressing 293T cells in amounts several times greater than RES. In addition, PTS showed a tyrosinase-dependent cytotoxicity against B16BL6 melanoma cells that was stronger than RES and also inhibited the formation of melanin in B16BL6 melanoma cells and in the culture medium. These results suggest that the two methyl groups of PTS, which are lipophilic, increase its membrane permeability, making it easier to bind to intracellular proteins, and may therefore be more cytotoxic to melanin-producing cells.
Assuntos
Melaninas , Monofenol Mono-Oxigenase , Estilbenos , Monofenol Mono-Oxigenase/metabolismo , Humanos , Estilbenos/farmacologia , Estilbenos/metabolismo , Estilbenos/química , Animais , Melaninas/metabolismo , Melaninas/biossíntese , Camundongos , Resveratrol/farmacologia , Resveratrol/análogos & derivados , Ativação Metabólica , Linhagem Celular Tumoral , Células HEK293 , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacosRESUMO
Although the safety of genome-edited foods in Japan has been confirmed through pre-submission consultation under the notification process, public perception of safety confirmation methodology has not been investigated to date. Therefore, we created three media to provide information on the safety assurance of genome-edited foods and surveyed the perception of current safety confirmation. In addition, we examined the opinions of researchers in health science on current safety confirmation methods. As a result, 62% of general consumers and 68% of researchers in health science recognized that safety is ensured. Acceptance of genome-edited foods improved when they realized that safety was ensured. Researchers in health science who felt that safety confirmation was insufficient were concerned about the third-party verification. Therefore, it was suggested that in order to boost public understanding of genome-edited foods, it would be useful to inform the public by communicating in an easy-to-understand way the safety assurance approaches being made in pre-submission consultation.
Assuntos
Inocuidade dos Alimentos , Alimentos Geneticamente Modificados , Humanos , Japão , Inquéritos e Questionários , Edição de Genes , Masculino , Feminino , Conscientização , Adulto , Pessoa de Meia-Idade , Meios de Comunicação de Massa , Adulto JovemRESUMO
Processed foods containing soybean or maize are subject to labeling regulations pertinent to genetically modified (GM) foods in Japan. To confirm the reliability of the labeling procedure of GM foods, the Japanese standard analytical methods (standard methods) using real-time PCR technique have been established. Although certain DNA extraction protocols are stipulated as standard in these methods, the use of other protocols confirmed to be equivalent to the existing ones was permitted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or corn was conducted. In this study, the equivalence testing of the techniques employed for DNA extraction from processed foods containing soybean or maize was conducted. The silica membrane-based DNA extraction kits, GM quicker 4 and DNeasy Plant Maxi Kit (Maxi Kit), as an existing method were compared. GM quicker 4 was considered to be equivalent to or better than Maxi Kit.
Assuntos
DNA de Plantas , Alimentos Geneticamente Modificados , Glycine max , Zea mays , DNA de Plantas/isolamento & purificação , DNA de Plantas/genética , Análise de Alimentos/métodos , Rotulagem de Alimentos , Alimento Processado , Glycine max/química , Glycine max/genética , Japão , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/química , Zea mays/genéticaRESUMO
In the Japanese official detection method for unauthorized genetically modified (GM) papayas, one of two types of real-time PCR reagents with DNA polymerase (TaqMan Gene Master Mix [TaqMan Gene] or FastGene QPCR Probe Mastermix w/ROX [FastGene]) is primarily used for measurement. In 2022, we conducted a laboratory performance study on the unauthorized GM papaya line PRSV-YK, and the results revealed that high threshold cycle (Cq) values for the PRSV-YK detection test were obtained using TaqMan Gene with the 7500 Fast & 7500 Real-Time PCR System (ABI7500) and QuantStudio 12K Flex (QS12K), indicating the possibility of false negatives. The possibility of similar problems with all unauthorized GM papaya lines detection tests needs to be evaluated. In this study, we performed detection tests on unauthorized GM papaya lines (PRSV-YK, PRSV-SC, and PRSV-HN), the cauliflower mosaic virus 35S promotor (CaM), and a papaya positive control (Chy), and examined how the limits of detection (LOD) for each test are affected by two types of DNA polymerases (TaqMan Gene and FastGene) and three types of real-time PCR instruments (ABI7500, QS12K, and LightCycler 480 Instrument II [LC480]). In the PRSV-YK and PRSV-SC detection tests using ABI7500 and QS12K, measurement with TaqMan Gene showed a higher LOD than FastGene. In this case, an exponential amplification curve was confirmed on the amplification plot; however, the amplification curve did not cross the ΔRn threshold line and the correct Cq value was not obtained with a threshold line=0.2. The other tests (PRSV-HN, CaM, and Chy with ABI7500 and QS12K, and all detection tests with LC480) showed no important differences in the LOD for each test using either DNA polymerase. Therefore, when performing PRSV-YK and PRSV-SC detection tests with the ABI7500 or QS12K, FastGene should be used to avoid false negatives for foods containing GM papaya lines PRSV-YK and PRSV-SC at low mixing levels.
Assuntos
Carica , DNA Polimerase Dirigida por DNA , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Carica/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Plantas Geneticamente Modificadas/genética , Alimentos Geneticamente Modificados , Caulimovirus/genética , Potyvirus/genética , Potyvirus/isolamento & purificaçãoRESUMO
Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.
Assuntos
Carica , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , Carica/genética , DNA de Plantas/genética , DNA de Plantas/análise , Análise de Alimentos/métodos , Inocuidade dos Alimentos , Japão , Plantas Geneticamente Modificadas/genética , Potyvirus/genética , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos TestesRESUMO
Genome-editing using the CRISPR-Cas9 system has the potential to substantially accelerate crop breeding. Since off-target editing is one of problems, a reliable method for comprehensively detecting off-target sites is needed. A number of in silico methods based on homology to on-target sequence have been developed, however the prediction without false negative is still under discussion. In this study, we performed a SITE-Seq analysis to predict potential off-target sites. SITE-Seq analysis is a comprehensive method that can detect double-strand breaks in vitro. Furthermore, we developed a systematic method using SITE-Seq in combination with web-based Galaxy system (Galaxy for Cut Site Detection), which can perform reproducible analyses without command line operations. We conducted a SITE-Seq analysis of a rice genome targeted by OsFH15 gRNA-Cas9 as a model, and found 41 candidate off-target sites in the annotated regions. Detailed amplicon-sequencing revealed mutations at one off-target site in actual genome-edited rice. Since this off-target site has an uncommon protospacer adjacent motif, it is difficult to predict using in silico methods alone. Therefore, we propose a novel off-target assessment scheme for genome-edited crops that combines the prediction of off-target candidates by SITE-Seq and in silico programs and the validation of off-target sites by amplicon-sequencing.
Assuntos
Oryza , Oryza/genética , InternetRESUMO
An increasing number of research reports are describing modifications of the E3 ligand, in particular, cereblon (CRBN) ligands, to improve the chemical and metabolic stabilities as well as the physical properties of PROTACs. In this study, phenyl-glutarimide (PG) and 6-fluoropomalidomide (6-F-POM), recently used as CRBN ligands for PROTAC design, were applied to hematopoietic prostaglandin D2 synthase (H-PGDS)-targeted PROTACs. Both PROTAC-5 containing PG and PROTAC-6 containing 6-F-POM were found to have potent activities to induce H-PGDS degradation. Furthermore, we obtained in vitro ADME data on the newly designed PROTACS as well as our previously reported PROTACs(H-PGDS) series. Although all PROTACs(H-PGDS) are relatively stable toward metabolism, they had poor PAMPA values. Nevertheless, PROTAC-5 showed Papp values similar to TAS-205, which is in Phase 3 clinical trials, and is expected to be the key to improving the pharmacokinetics of PROTACs.
Assuntos
Prostaglandinas , Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Ligantes , Prostaglandinas/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologiaRESUMO
A loop-mediated isothermal amplification (LAMP)-mediated screening detection method for genetically modified (GM) papaya was developed targeting the 35S promoter (P35S) of the cauliflower mosaic virus. LAMP products were detected using a Genie II real-time fluorometer. The limit of detection (LOD) was evaluated and found to be ≤0.05% for papaya seeds. We also designed a primer set for the detection of the papaya endogenous reference sequence, chymopapain, and the species-specificity was confirmed. To improve cost-effectiveness, single-stranded tag hybridization (STH) on a chromatography printed-array strip (C-PAS) system, which is a lateral flow DNA chromatography technology, was applied. LAMP amplification was clearly detected by the system at the LOD level, and a duplex detection of P35S and chymopapain was successfully applied. This simple and quick method for the screening of GM papaya will be useful for the prevention of environmental contamination of unauthorized GM crops.
Assuntos
Carica , Quimopapaína , Carica/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Verduras , Sensibilidade e EspecificidadeRESUMO
Given that the number of genetically modified (GM) maize events that have been announced as having undergone safety assessment procedures in Japan is increasing yearly, more information is needed about their actual recent domestic distribution in Japan. In this study, we investigated whether current Japanese official qualitative and quantitative methods (the current official methods) for GM maize can comprehensively target events in domestically distributed maize. For samples with the identity-preserved (IP) handling system and non-IP samples from the United States (US) and non-IP samples from Brazil, we performed event-specific real-time PCR targeting 25 authorized single GM maize events in addition to the current official methods. According to our results, 15 events targeted by the current official methods were detected, but insect-resistance (IR) Event5307 and herbicide-tolerant (HT) DAS40278, not targeted by the current official methods, were detected in the US (one out of 5 lots) and Brazilian (four out of 5 lots) non-IP samples, respectively. Nevertheless, a survey of recent GM maize acreage in recent years has revealed that more than 95% of the acreage in US maize is occupied by HT or IR/HT stacked events, and that more than 95% of the acreage in Brazilian maize is occupied by IR or IR/HT stacked events. Because the current official methods can target all stacked events related to Event5307 and DAS40278, the only undetectable events are the single Event5307 and DAS40278, whose production is estimated to be less than 5% of the total production in the producing country. Therefore, we conclude that the current official methods for the labelling of GM maize should be maintained in view of practicability.
Assuntos
Herbicidas , Zea mays , Animais , Estados Unidos , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Japão , Reação em Cadeia da Polimerase em Tempo Real/métodos , InsetosRESUMO
Real-time polymerase chain reaction (PCR) is the gold standard for DNA detection in many fields, including food analysis. However, robust detection using a real-time PCR for low-content DNA samples remains challenging. In this study, we developed a robust real-time PCR method for low-content DNA using genetically modified (GM) maize at concentrations near the limit of detection (LOD) as a model. We evaluated the LOD of real-time PCR targeting two common GM maize sequences (P35S and TNOS) using GM maize event MON863 containing a copy of P35S and TNOS. The interlaboratory study revealed that the LOD differed among laboratories partly because DNA input amounts were variable depending on measurements of DNA concentrations. To minimize this variability for low-content DNA samples, we developed ΔΔCq-based real-time PCR. In this study, ΔCq and ΔΔCq are as follows: ΔCq = Cq (P35S or TNOS) - Cq (SSIIb; maize endogenous gene), ΔΔCq = ΔCq (analytical sample) - ΔCq (control sample at concentrations near the LOD). The presence of GM maize was determined based on ΔΔCq values. In addition, we used optimized standard plasmids containing SSIIb, P35S, and TNOS with ΔCq equal to the MON863 genomic DNA (gDNA) at concentrations near the LOD as a control sample. A validation study indicated that at least 0.2% MON863 gDNA could be robustly detected. Using several GM maize certified reference materials, we have demonstrated that this method was practical for detecting low-content GM crops and thus for validating GM food labeling. With appropriate standards, this method would be applicable in many fields, not just food.
Assuntos
Zea mays , DNA de Plantas/análise , DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Zea mays/genéticaRESUMO
Many countries have implemented the labeling system of genetically modified organisms (GMO). In Japan, the regulatory threshold for non-GMO labeling will be revised and restricted to undetectable by April 2023. The practical criterion for the revised system is based on the limit of detection (LOD). However, determining whether the commingling of GMO levels exceeds the LOD is challenging because GM contents close to the LOD are usually below the limit of quantification. In this study, we developed a qualitative method based on comparative Cq-based analysis targeting cauliflower mosaic virus 35S promoter and GM soybean MON89788 event-specific sequences that could be applicable to the revised non-GMO labeling. ΔCq values between the target and endogenous sequences were calculated, and the ΔΔCq value obtained was used as a criterion to determine analytical samples with GM contents exceeding the threshold. To improve the reproducibility of the method, we used a standard plasmid that yields equivalent and stable ΔCq values comparable with those obtained from LOD samples. The developed method was validated with an interlaboratory study. The new qualitative detection concept would be useful for ensuring robust and reproducible results among laboratories, particularly for detecting low-copy-number DNA samples.
Assuntos
Glycine max , DNA de Plantas/análise , Japão , Plantas Geneticamente Modificadas/genética , Reprodutibilidade dos Testes , Glycine max/genéticaRESUMO
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3), which has been identified in many cancers such as glioblastoma and bladder cancer, is a potent oncogenic fusion protein that induces constitutive activation of FGFR signaling, resulting in uncontrolled cell proliferation. Although several tyrosine kinase inhibitors against FGFR are currently under development, resistance to such types of inhibitors in patients has become a concern. In this study, a chimeric molecule SNIPER(TACC3)-11 (5a) was developed and found to reduce FGFR3-TACC3 levels effectively. Compound 5a conjugated KHS108 (a TACC3 ligand) to an LCL161 derivative (11) (an inhibitor of apoptosis protein [IAP] ligand) with a PEG linker (n = 2). Mechanistical analysis showed that cellular IAP1 was required for the reduction of FGFR3-TACC3 levels. Consistent with the decrease in FGFR3-TACC3 levels, compound 5a suppressed the growth of FGFR3-TACC3 positive cells. Thus, compound 5a is a candidate therapeutic with a novel drug modality against cancers that exhibit FGFR3-TACC3-dependent proliferation and exerts pharmacological effects distinct from FGFR3 kinase inhibitors because it lacks substructures crucial for kinase inhibition.
Assuntos
Antineoplásicos , Desenvolvimento de Medicamentos , Proteínas Associadas aos Microtúbulos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Estrutura Molecular , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-AtividadeRESUMO
Stimulator of Interferon Genes (STING) is a type of endoplasmic reticulum (ER)-membrane receptor. STING is activated by a ligand binding, which leads to an enhancement of the immune-system response. Therefore, a STING ligand can be used to regulate the immune system in therapeutic strategies. However, the natural (or native) STING ligand, cyclic-di-nucleotide (CDN), is unsuitable for pharmaceutical use because of its susceptibility to degradation by enzymes and its low cell-membrane permeability. In this study, we designed and synthesized CDN derivatives by replacing the sugar-phosphodiester moiety, which is responsible for various problems of natural CDNs, with an amine skeleton. As a result, we identified novel STING ligands that activate or inhibit STING. The cyclic ligand 7, with a cyclic amine structure containing two guanines, was found to have agonistic activity, whereas the linear ligand 12 showed antagonistic activity. In addition, these synthetic ligands were more chemically stable than the natural ligands.
Assuntos
Aminas , Proteínas de Membrana , GMP Cíclico/análogos & derivados , Ligantes , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Esqueleto/metabolismoRESUMO
Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptor α (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein-knockdown and cytocidal activities against cancer cells requiring IAPs for survival.
Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Antineoplásicos/farmacologia , Regulação para Baixo , Humanos , Ligantes , Células MCF-7 , Camundongos , Ligação Proteica , Proteólise , Tiazóis/farmacologia , Ubiquitinação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chronic myeloid leukemia (CML) is caused by the chimeric protein p210 BCR-ABL encoded by a gene on the Philadelphia chromosome. Although the kinase domain of p210 BCR-ABL is an active driver of CML, the pathological role of its pleckstrin homology (PH) domain remains unclear. Here, we carried out phospholipid vesicle-binding assays to show that cardiolipin (CL), a characteristic mitochondrial phospholipid, is a unique ligand of the PH domain. Arg726, a basic amino acid in the ligand-binding region, was crucial for ligand recognition. A subset of wild-type p210 BCR-ABL that was transiently expressed in HEK293 cells was dramatically translocated from the cytosol to mitochondria in response to carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, which induces mitochondrial depolarization and subsequent externalization of CL to the organelle's outer membrane, whereas an R726A mutant of the protein was not translocated. Furthermore, only wild-type p210 BCR-ABL, but not the R726A mutant, suppressed CCCP-induced mitophagy and subsequently enhanced reactive oxygen species production. Thus, p210 BCR-ABL can change its intracellular localization via interactions between the PH domain and CL to cope with mitochondrial damage. This suggests that p210 BCR-ABL could have beneficial effects for cancer proliferation, providing new insight into the PH domain's contribution to CML pathogenesis.
Assuntos
Cardiolipinas/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Domínios de Homologia à Plecstrina , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citosol/metabolismo , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transporte ProteicoRESUMO
The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to effect targeted degradation. Unlike the chimeric molecules that recruit von Hippel-Lindau and cereblon ubiquitin ligases, SNIPERs induce simultaneous degradation of IAPs such as cIAP1 and XIAP along with the target proteins. Because cancer cells often overexpress IAPs-a mechanism involved in the resistance to cancer therapy-SNIPERs could be used to kill cancer cells efficiently.
Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Proteólise , Animais , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Neoplasias/metabolismoRESUMO
Chromosomal translocation occurs in some cancer cells, resulting in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate expression of the BCR-ABL protein. Recently, we have devised a protein knockdown system by hybrid molecules named Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers (SNIPER). This system is designed to induce IAP-mediated ubiquitylation and proteasomal degradation of target proteins. In this review, we describe the development of SNIPER against BCR-ABL, and discuss the features and prospect for treatment of CML.