RESUMO
The long-term, steady-state marine carbon isotope record reflects changes to the proportional burial rate of organic carbon relative to total carbon on a global scale. For this reason, times of high δ13C are conventionally interpreted to be oxygenation events caused by excess organic burial. Here we show that the carbon isotope mass balance is also significantly affected by tectonic uplift and erosion via changes to the inorganic carbon cycle that are independent of changes to the isotopic composition of carbon input. This view is supported by inverse covariance between δ13C and a range of uplift proxies, including seawater 87Sr/86Sr, which demonstrates how erosional forcing of carbonate weathering outweighs that of organic burial on geological timescales. A model of the long-term carbon cycle shows that increases in δ13C need not be associated with increased organic burial and that alternative tectonic drivers (erosion, outgassing) provide testable and plausible explanations for sustained deviations from the long-term δ13C mean. Our approach emphasizes the commonly overlooked difference between how net and gross carbon fluxes affect the long-term carbon isotope mass balance, and may lead to reassessment of the role that the δ13C record plays in reconstructing the oxygenation of earth's surface environment.
RESUMO
The nature of the last universal common ancestor (LUCA), its age and its impact on the Earth system have been the subject of vigorous debate across diverse disciplines, often based on disparate data and methods. Age estimates for LUCA are usually based on the fossil record, varying with every reinterpretation. The nature of LUCA's metabolism has proven equally contentious, with some attributing all core metabolisms to LUCA, whereas others reconstruct a simpler life form dependent on geochemistry. Here we infer that LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing implementation. Phylogenetic reconciliation suggests that LUCA had a genome of at least 2.5 Mb (2.49-2.99 Mb), encoding around 2,600 proteins, comparable to modern prokaryotes. Our results suggest LUCA was a prokaryote-grade anaerobic acetogen that possessed an early immune system. Although LUCA is sometimes perceived as living in isolation, we infer LUCA to have been part of an established ecological system. The metabolism of LUCA would have provided a niche for other microbial community members and hydrogen recycling by atmospheric photochemistry could have supported a modestly productive early ecosystem.
Assuntos
Archaea , Bactérias , Planeta Terra , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Archaea/genética , Archaea/classificação , Filogenia , Fósseis , Evolução BiológicaRESUMO
The oxygen isotopes in sedimentary cherts (siliceous sediments) have been used to argue that the Precambrian oceans were hot--with temperatures of up to 70 degrees C at 3.3 Gyr before present. Robert and Chaussidon measure silicon isotopes in cherts and arrive at a similar conclusion. We suggest here that both isotope trends may be caused by variations in seawater isotope composition, rather than in ocean temperatures. If so, then the climate of the early Earth may have been temperate, as it is today, and therefore more consistent with evidence for Precambrian glaciations and with constraints inferred from biological evolution.
Assuntos
Clima , Sedimentos Geológicos/química , Água do Mar/análise , Água do Mar/química , Temperatura , Evolução Biológica , Carbonatos/análise , História Antiga , Oceanos e Mares , Isótopos de Oxigênio , Reprodutibilidade dos Testes , Silício/análise , Fatores de TempoRESUMO
Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions.
RESUMO
The body fossil and biomarker records hint at an increase in biotic complexity between the two Cryogenian Snowball Earth episodes (ca. 661 million to ≤650 million years ago). Oxygen and nutrient availability can promote biotic complexity, but nutrient (particularly phosphorus) and redox dynamics across this interval remain poorly understood. Here, we present high-resolution paleoredox and phosphorus phase association data from multiple globally distributed drill core records through the non-glacial interval. These data are first correlated regionally by litho- and chemostratigraphy, and then calibrated within a series of global chronostratigraphic frameworks. The combined data show that regional differences in postglacial redox stabilization were partly controlled by the intensity of phosphorus recycling from marine sediments. The apparent increase in biotic complexity followed a global transition to more stable and less reducing conditions in shallow to mid-depth marine environments and occurred within a tolerable climatic window during progressive cooling after post-Snowball super-greenhouse conditions.
RESUMO
The role of oxygen as a driver for early animal evolution is widely debated. During the Cambrian explosion, episodic radiations of major animal phyla occurred coincident with repeated carbon isotope fluctuations. However, the driver of these isotope fluctuations and potential links to environmental oxygenation are unclear. Here, we report high-resolution carbon and sulphur isotope data for marine carbonates from the southeastern Siberian Platform that document the canonical explosive phase of the Cambrian radiation from ~524 to ~514 Myr ago. These analyses demonstrate a strong positive covariation between carbonate δ13C and carbonate-associated sulphate δ34S through five isotope cycles. Biogeochemical modelling suggests that this isotopic coupling reflects periodic oscillations in atmospheric O2 and the extent of shallow ocean oxygenation. Episodic maxima in the biodiversity of animal phyla directly coincided with these extreme oxygen perturbations. Conversely, the subsequent Botoman-Toyonian animal extinction events (~514 to ~512 Myr ago) coincided with decoupled isotope records that suggest a shrinking marine sulphate reservoir and expanded shallow marine anoxia. We suggest that fluctuations in oxygen availability in the shallow marine realm exerted a primary control on the timing and tempo of biodiversity radiations at a crucial phase in the early history of animal life.
RESUMO
The Neoproterozoic Earth system was significantly different from the modern world, as evidenced by extraordinary carbon isotope fluctuations that defy conventional explanation. Because Earth's carbon and oxygen budgets must be balanced on very long time scales (>105 years), such prolonged excursions can best be explained by invoking a vast pool of dissolved organic matter (DOM) in the world's oceans and its remineralisation by surplus oxidant after pyrite burial. The episodic waxing and waning of a DOM reservoir helps to explain the occurrence and timing of extreme climate events during the Neoproterozoic Era. Ecological dominance by eukaryotes, such as animals and algae, arose from a series of opportunistic radiations of aerobic life forms during periods of net DOM remineralisation and oxygenation.
RESUMO
The original version of this Article incorrectly gave the second address in the list of affiliations as "State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008 Nanjing, China", instead of the correct 'State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China". This has been corrected in both the PDF and HTML versions of the Article.
RESUMO
The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life. The role of the physical environment in this biological revolution, such as changes to oxygen levels and nutrient availability, has been the focus of longstanding debate. Seemingly contradictory data from geochemical redox proxies help to fuel this controversy. As an essential nutrient, nitrogen can help to resolve this impasse by establishing linkages between nutrient supply, ocean redox, and biological changes. Here we present a comprehensive N-isotope dataset from the Yangtze Basin that reveals remarkable coupling between δ15N, δ13C, and evolutionary events from circa 551 to 515 Ma. The results indicate that increased fixed nitrogen supply may have facilitated episodic animal radiations by reinforcing ocean oxygenation, and restricting anoxia to near, or even at the sediment-water interface. Conversely, sporadic ocean anoxic events interrupted ocean oxygenation, and may have led to extinctions of the Ediacaran biota and small shelly animals.
RESUMO
The Cryogenian period (~720-635 Ma) is marked by extensive Snowball Earth glaciations. These have previously been linked to CO2 draw-down, but the severe cold climates of the Cryogenian have never been replicated during the Phanerozoic despite similar, and sometimes more dramatic changes to carbon sinks. Here we quantify the total CO2 input rate, both by measuring the global length of subduction zones in plate tectonic reconstructions, and by sea-level inversion. Our results indicate that degassing rates were anomalously low during the Late Neoproterozoic, roughly doubled by the Early Phanerozoic, and remained comparatively high until the Cenozoic. Our carbon cycle modelling identifies the Cryogenian as a unique period during which low surface temperature was more easily achieved, and shows that the shift towards greater CO2 input rates after the Cryogenian helped prevent severe glaciation during the Phanerozoic. Such a shift appears essential for the development of complex animal life.