Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Genet ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014191

RESUMO

Camurati-Engelmann disease (CED) is an autosomal dominant bone dysplasia characterized by progressive hyperostosis of the skull base and diaphyses of the long bones. CED is further divided into two subtypes, CED1 and CED2, according to the presence or absence of TGFB1 mutations, respectively. In this study, we used exome sequencing to investigate the genetic cause of CED2 in three pedigrees and identified two de novo heterozygous mutations in TGFB2 among the three patients. Both mutations were located in the region of the gene encoding the straitjacket subdomain of the latency-associated peptide (LAP) of pro-TGF-ß2. Structural simulations of the mutant LAPs suggested that the mutations could cause significant conformational changes and lead to a reduction in TGF-ß2 inactivation. An activity assay confirmed a significant increase in TGF-ß2/SMAD signaling. In vitro osteogenic differentiation experiment using iPS cells from one of the CED2 patients showed significantly enhanced ossification, suggesting that the pathogenic mechanism of CED2 is increased activation of TGF-ß2 by loss-of-function of the LAP. These results, in combination with the difference in hyperostosis patterns between CED1 and CED2, suggest distinct functions between TGFB1 and TGFB2 in human skeletal development and homeostasis.

2.
Nucleic Acids Res ; 50(21): 12543-12557, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36454022

RESUMO

Several basic leucine zipper (bZIP) transcription factors have accessory motifs in their DNA-binding domains, such as the CNC motif of CNC family or the EHR motif of small Maf (sMaf) proteins. CNC family proteins heterodimerize with sMaf proteins to recognize CNC-sMaf binding DNA elements (CsMBEs) in competition with sMaf homodimers, but the functional role of the CNC motif remains elusive. In this study, we report the crystal structures of Nrf2/NFE2L2, a CNC family protein regulating anti-stress transcriptional responses, in a complex with MafG and CsMBE. The CNC motif restricts the conformations of crucial Arg residues in the basic region, which form extensive contact with the DNA backbone phosphates. Accordingly, the Nrf2-MafG heterodimer has approximately a 200-fold stronger affinity for CsMBE than canonical bZIP proteins, such as AP-1 proteins. The high DNA affinity of the CNC-sMaf heterodimer may allow it to compete with the sMaf homodimer on target genes without being perturbed by other low-affinity bZIP proteins with similar sequence specificity.


Assuntos
Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/genética
3.
Am J Hum Genet ; 106(1): 13-25, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31839203

RESUMO

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.


Assuntos
Encefalopatias/etiologia , Anormalidades Craniofaciais/etiologia , Mutação com Ganho de Função , Regulação da Expressão Gênica , Deleção de Sequência , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Encefalopatias/patologia , Proliferação de Células , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Células HeLa , Humanos , Masculino , Proteólise , Síndrome , Transativadores/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/metabolismo
4.
Hepatology ; 73(2): 520-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32446278

RESUMO

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Precursores de Proteínas/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Precursores de Proteínas/genética
5.
Am J Hum Genet ; 102(3): 480-486, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29455859

RESUMO

Pulmonary alveolar proteinosis (PAP) is characterized by accumulation of a surfactant-like substance in alveolar spaces and hypoxemic respiratory failure. Genetic PAP (GPAP) is caused by mutations in genes encoding surfactant proteins or genes encoding a surfactant phospholipid transporter in alveolar type II epithelial cells. GPAP is also caused by mutations in genes whose products are implicated in surfactant catabolism in alveolar macrophages (AMs). We performed whole-exome sequence analysis in a family affected by infantile-onset PAP with hypogammaglobulinemia without causative mutations in genes associated with PAP: SFTPB, SFTPC, ABCA3, CSF2RA, CSF2RB, and GATA2. We identified a heterozygous missense variation in OAS1, encoding 2,'5'-oligoadenylate synthetase 1 (OAS1) in three affected siblings, but not in unaffected family members. Deep sequence analysis with next-generation sequencing indicated 3.81% mosaicism of this variant in DNA from their mother's peripheral blood leukocytes, suggesting that PAP observed in this family could be inherited as an autosomal-dominant trait from the mother. We identified two additional de novo heterozygous missense variations of OAS1 in two unrelated simplex individuals also manifesting infantile-onset PAP with hypogammaglobulinemia. PAP in the two simplex individuals resolved after hematopoietic stem cell transplantation, indicating that OAS1 dysfunction is associated with impaired surfactant catabolism due to the defects in AMs.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Agamaglobulinemia/complicações , Agamaglobulinemia/genética , Proteinose Alveolar Pulmonar/complicações , Proteinose Alveolar Pulmonar/genética , 2',5'-Oligoadenilato Sintetase/química , Sequência de Aminoácidos , Sequência de Bases , Demografia , Evolução Molecular , Família , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Modelos Moleculares , Mutação
6.
Hum Mol Genet ; 27(8): 1421-1433, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29432562

RESUMO

Calcineurin is a calcium (Ca2+)/calmodulin-regulated protein phosphatase that mediates Ca2+-dependent signal transduction. Here, we report six heterozygous mutations in a gene encoding the alpha isoform of the calcineurin catalytic subunit (PPP3CA). Notably, mutations were observed in different functional domains: in addition to three catalytic domain mutations, two missense mutations were found in the auto-inhibitory (AI) domain. One additional frameshift insertion that caused premature termination was also identified. Detailed clinical evaluation of the six individuals revealed clinically unexpected consequences of the PPP3CA mutations. First, the catalytic domain mutations and frameshift mutation were consistently found in patients with nonsyndromic early onset epileptic encephalopathy. In contrast, the AI domain mutations were associated with multiple congenital abnormalities including craniofacial dysmorphism, arthrogryposis and short stature. In addition, one individual showed severe skeletal developmental defects, namely, severe craniosynostosis and gracile bones (severe bone slenderness and perinatal fractures). Using a yeast model system, we showed that the catalytic and AI domain mutations visibly result in decreased and increased calcineurin signaling, respectively. These findings indicate that different functional effects of PPP3CA mutations are associated with two distinct disorders and suggest that functional approaches using a simple cellular system provide a tool for resolving complex genotype-phenotype correlations.


Assuntos
Artrogripose/genética , Calcineurina/genética , Anormalidades Craniofaciais/genética , Nanismo/genética , Mutação com Ganho de Função , Mutação com Perda de Função , Espasmos Infantis/genética , Sequência de Aminoácidos , Artrogripose/metabolismo , Artrogripose/patologia , Sequência de Bases , Calcineurina/química , Calcineurina/metabolismo , Criança , Pré-Escolar , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Nanismo/metabolismo , Nanismo/patologia , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Modelos Moleculares , Linhagem , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espasmos Infantis/metabolismo , Espasmos Infantis/patologia , Adulto Jovem
7.
Am J Hum Genet ; 100(1): 169-178, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017374

RESUMO

Nemaline myopathy (NM) is a common form of congenital nondystrophic skeletal muscle disease characterized by muscular weakness of proximal dominance, hypotonia, and respiratory insufficiency but typically not cardiac dysfunction. Wide variation in severity has been reported. Intranuclear rod myopathy is a subtype of NM in which rod-like bodies are seen in the nucleus, and it often manifests as a severe phenotype. Although ten mutant genes are currently known to be associated with NM, only ACTA1 is associated with intranuclear rod myopathy. In addition, the genetic cause remains unclear in approximately 25%-30% of individuals with NM. We performed whole-exome sequencing on individuals with histologically confirmed but genetically unsolved NM. Our study included individuals with milder, later-onset NM and identified biallelic loss-of-function mutations in myopalladin (MYPN) in four families. Encoded MYPN is a sarcomeric protein exclusively localized in striated muscle in humans. Individuals with identified MYPN mutations in all four of these families have relatively mild, childhood- to adult-onset NM with slowly progressive muscle weakness. Walking difficulties were recognized around their forties. Decreased respiratory function, cardiac involvement, and intranuclear rods in biopsied muscle were observed in two individuals. MYPN was localized at the Z-line in control skeletal muscles but was absent from affected individuals. Homozygous knockin mice with a nonsense mutation in Mypn showed Z-streaming and nemaline-like bodies adjacent to a disorganized Z-line on electron microscopy, recapitulating the disease. Our results suggest that MYPN screening should be considered in individuals with mild NM, especially when cardiac problems or intranuclear rods are present.


Assuntos
Alelos , Progressão da Doença , Proteínas Musculares/genética , Mutação , Miopatias da Nemalina/genética , Adulto , Idade de Início , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina/patologia , Linhagem
8.
Hepatol Res ; 50(3): 283-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756766

RESUMO

AIM: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.

9.
Nucleic Acids Res ; 46(5): 2243-2251, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29309620

RESUMO

Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcription factor Ets1, just before the DNA-binding core domain, undergoes multi-modal interactions when the SRR is not phosphorylated. In the phosphorylated state, the SRR forms a few specific complex structures with the Ets1 core, covering the recognition helix in the core and drastically reducing the DNA binding affinities as the auto-inhibitory state. The binding kinetics of mutated Ets1 indicates that aromatic residues in the SRR can be substituted with other hydrophobic residues for the interactions with the Ets1 core.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteína Proto-Oncogênica c-ets-1/química , Substituição de Aminoácidos , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Fosforilação , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
10.
J Am Soc Nephrol ; 30(5): 877-889, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962325

RESUMO

BACKGROUND: The stimulatory G-protein α-subunit encoded by GNAS exons 1-13 (GNAS-Gsα) mediates signal transduction of multiple G protein-coupled receptors, including arginine vasopressin receptor 2 (AVPR2). Various germline-derived loss-of-function GNAS-Gsα variants of maternal and paternal origin have been found in pseudohypoparathyroidism type Ia and pseudopseudohypoparathyroidism, respectively. Specific somatic gain-of-function GNAS-Gsα variants have been detected in McCune-Albright syndrome and may result in phosphate wasting. However, no germline-derived gain-of-function variant has been identified, implying that such a variant causes embryonic lethality. METHODS: We performed whole-exome sequencing in two families with dominantly inherited nephrogenic syndrome of inappropriate antidiuresis (NSIAD) as a salient phenotype after excluding a gain-of-function variant of AVPR2 and functional studies for identified variants. RESULTS: Whole-exome sequencing revealed two GNAS-Gsα candidate variants for NSIAD: GNAS-Gsα p.(F68_G70del) in one family and GNAS-Gsα p.(M255V) in one family. Both variants were absent from public and in-house databases. Of genes with rare variants, GNAS-Gsα alone was involved in AVPR2 signaling and shared by the families. Protein structural analyses revealed a gain-of-function-compatible conformational property for p.M255V-Gsα, although such assessment was not possible for p.F68_G70del-Gsα. Both variants had gain-of-function effects that were significantly milder than those of McCune-Albright syndrome-specific somatic Gsα variants. Model mice for p.F68_G70del-Gsα showed normal survivability and NSIAD-compatible phenotype, whereas those for p.M255V-Gsα exhibited severe failure to thrive. CONCLUSIONS: This study shows that germline-derived gain-of-function rare variants of GNAS-Gsα exist and cause NSIAD as a novel Gsα-mediated genetic disease. It is likely that AVPR2 signaling is most sensitive to GNAS-Gsα's gain-of-function effects.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação com Ganho de Função/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Síndrome de Secreção Inadequada de HAD/genética , Estudos de Coortes , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Mutação em Linhagem Germinativa/genética , Humanos , Síndrome de Secreção Inadequada de HAD/diagnóstico , Masculino , Fenótipo , Prognóstico , Doenças Raras , Sequenciamento do Exoma
11.
Neurobiol Dis ; 130: 104516, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229688

RESUMO

Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144G > A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168G > A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11-20 weeks and showed Purkinje cell loss at 50 weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cerebelo/metabolismo , Fenótipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Canais de Cálcio Tipo T/genética , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
12.
Am J Hum Genet ; 99(4): 950-961, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666374

RESUMO

We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and ß-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy.


Assuntos
Alelos , Encefalopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Adolescente , Idade de Início , Sequência de Aminoácidos , Animais , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Drosophila melanogaster/genética , Exoma , Feminino , Mutação da Fase de Leitura/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Sítios de Splice de RNA/genética , Tubulina (Proteína)/metabolismo , Adulto Jovem
13.
Ann Neurol ; 84(6): 814-828, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427554

RESUMO

OBJECTIVE: Galloway-Mowat syndrome (GAMOS) is a neural and renal disorder, characterized by microcephaly, brain anomalies, and early onset nephrotic syndrome. Biallelic mutations in WDR73 and the 4 subunit genes of the KEOPS complex are reported to cause GAMOS. Furthermore, an identical homozygous NUP107 (nucleoporin 107kDa) mutation was identified in 4 GAMOS-like families, although biallelic NUP107 mutations were originally identified in steroid-resistant nephrotic syndrome. NUP107 and NUP133 (nucleoporin 133kDa) are interacting subunits of the nuclear pore complex in the nuclear envelope during interphase, and these proteins are also involved in centrosome positioning and spindle assembly during mitosis. METHODS: Linkage analysis and whole exome sequencing were performed in a previously reported GAMOS family with brain atrophy and steroid-resistant nephrotic syndrome. RESULTS: We identified a homozygous NUP133 mutation, c.3335-11T>A, which results in the insertion of 9bp of intronic sequence between exons 25 and 26 in the mutant transcript. NUP133 and NUP107 interaction was impaired by the NUP133 mutation based on an immunoprecipitation assay. Importantly, focal cortical dysplasia type IIa was recognized in the brain of an autopsied patient and focal segmental glomerulosclerosis was confirmed in the kidneys of the 3 examined patients. A nup133-knockdown zebrafish model exhibited microcephaly, fewer neuronal cells, underdeveloped glomeruli, and fusion of the foot processes of the podocytes, which mimicked human GAMOS features. nup133 morphants could be rescued by human wild-type NUP133 mRNA but not by mutant mRNA. INTERPRETATION: These data indicate that the biallelic NUP133 loss-of-function mutation causes GAMOS. Ann Neurol 2018;84:814-828.


Assuntos
Predisposição Genética para Doença/genética , Hérnia Hiatal/genética , Microcefalia/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação/genética , Nefrose/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Saúde da Família , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hérnia Hiatal/diagnóstico por imagem , Hérnia Hiatal/patologia , Humanos , Lactente , Japão , Rim/metabolismo , Rim/patologia , Rim/ultraestrutura , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/ultraestrutura , Morfolinos/administração & dosagem , Mutagênese Sítio-Dirigida , Nefrose/diagnóstico por imagem , Nefrose/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Adulto Jovem , Peixe-Zebra
14.
Ann Neurol ; 83(4): 794-806, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29534297

RESUMO

OBJECTIVE: The cytoplasmic fragile X mental retardation 1 interacting proteins 2 (CYFIP2) is a component of the WASP-family verprolin-homologous protein (WAVE) regulatory complex, which is involved in actin dynamics. An obvious association of CYFIP2 variants with human neurological disorders has never been reported. Here, we identified de novo hotspot CYFIP2 variants in neurodevelopmental disorders and explore the possible involvement of the CYFIP2 mutants in the WAVE signaling pathway. METHODS: We performed trio-based whole-exome sequencing (WES) in 210 families and case-only WES in 489 individuals with epileptic encephalopathies. The functional effect of CYFIP2 variants on WAVE signaling was evaluated by computational structural analysis and in vitro transfection experiments. RESULTS: We identified three de novo CYFIP2 variants at the Arg87 residue in 4 unrelated individuals with early-onset epileptic encephalopathy. Structural analysis indicated that the Arg87 residue is buried at an interface between CYFIP2 and WAVE1, and the Arg87 variant may disrupt hydrogen bonding, leading to structural instability and aberrant activation of the WAVE regulatory complex. All mutant CYFIP2 showed comparatively weaker interactions to the VCA domain than wild-type CYFIP2. Immunofluorescence revealed that ectopic speckled accumulation of actin and CYFIP2 was significantly increased in cells transfected with mutant CYFIP2. INTERPRETATION: Our findings suggest that de novo Arg87 variants in CYFIP2 have gain-of-function effects on the WAVE signaling pathway and are associated with severe neurological disorders. Ann Neurol 2018;83:794-806.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Arginina/genética , Mutação/genética , Espasmos Infantis/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Linhagem Celular Transformada , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Linhagem , Espasmos Infantis/diagnóstico por imagem , Transfecção , Sequenciamento do Exoma
15.
Ann Neurol ; 84(6): 843-853, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30412317

RESUMO

OBJECTIVE: Approximately 5% of cerebral small vessel diseases are hereditary, which include COL4A1/COL4A2-related disorders. COL4A1/COL4A2 encode type IV collagen α1/2 chains in the basement membranes of cerebral vessels. COL4A1/COL4A2 mutations impair the secretion of collagen to the extracellular matrix, thereby resulting in vessel fragility. The diagnostic yield for COL4A1/COL4A2 variants is around 20 to 30%, suggesting other mutated genes might be associated with this disease. This study aimed to identify novel genes that cause COL4A1/COL4A2-related disorders. METHODS: Whole exome sequencing was performed in 2 families with suspected COL4A1/COL4A2-related disorders. We validated the role of COLGALT1 variants by constructing a 3-dimensional structural model, evaluating collagen ß (1-O) galactosyltransferase 1 (ColGalT1) protein expression and ColGalT activity by Western blotting and collagen galactosyltransferase assays, and performing in vitro RNA interference and rescue experiments. RESULTS: Exome sequencing demonstrated biallelic variants in COLGALT1 encoding ColGalT1, which was involved in the post-translational modification of type IV collagen in 2 unrelated patients: c.452 T > G (p.Leu151Arg) and c.1096delG (p.Glu366Argfs*15) in Patient 1, and c.460G > C (p.Ala154Pro) and c.1129G > C (p.Gly377Arg) in Patient 2. Three-dimensional model analysis suggested that p.Leu151Arg and p.Ala154Pro destabilized protein folding, which impaired enzymatic activity. ColGalT1 protein expression and ColGalT activity in Patient 1 were undetectable. RNA interference studies demonstrated that reduced ColGalT1 altered COL4A1 secretion, and rescue experiments showed that mutant COLGALT1 insufficiently restored COL4A1 production in cells compared with wild type. INTERPRETATION: Biallelic COLGALT1 variants cause cerebral small vessel abnormalities through a common molecular pathogenesis with COL4A1/COL4A2-related disorders. Ann Neurol 2018;84:843-853.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Colágeno Tipo IV/genética , Predisposição Genética para Doença/genética , Mutação/genética , Linhagem Celular Transformada , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Glucosiltransferases/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Mutagênese , RNA Mensageiro/metabolismo , Transfecção
16.
Brain ; 141(6): 1703-1718, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668857

RESUMO

V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients' lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients' lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Mutação/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Encefalopatias/complicações , Encefalopatias/patologia , Células Cultivadas , Criança , Estudos de Coortes , Epilepsia/complicações , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Modelos Moleculares , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Ratos , Sinapses/metabolismo , Sinapses/patologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequenciamento do Exoma
17.
Am J Hum Genet ; 97(4): 555-66, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26411495

RESUMO

The nuclear pore complex (NPC) is a huge protein complex embedded in the nuclear envelope. It has central functions in nucleocytoplasmic transport, nuclear framework, and gene regulation. Nucleoporin 107 kDa (NUP107) is a component of the NPC central scaffold and is an essential protein in all eukaryotic cells. Here, we report on biallelic NUP107 mutations in nine affected individuals who are from five unrelated families and show early-onset steroid-resistant nephrotic syndrome (SRNS). These individuals have pathologically focal segmental glomerulosclerosis, a condition that leads to end-stage renal disease with high frequency. NUP107 is ubiquitously expressed, including in glomerular podocytes. Three of four NUP107 mutations detected in the affected individuals hamper NUP107 binding to NUP133 (nucleoporin 133 kDa) and NUP107 incorporation into NPCs in vitro. Zebrafish with nup107 knockdown generated by morpholino oligonucleotides displayed hypoplastic glomerulus structures and abnormal podocyte foot processes, thereby mimicking the pathological changes seen in the kidneys of the SRNS individuals with NUP107 mutations. Considering the unique properties of the podocyte (highly differentiated foot-process architecture and slit membrane and the inability to regenerate), we propose a "podocyte-injury model" as the pathomechanism for SRNS due to biallelic NUP107 mutations.


Assuntos
Idade de Início , Mutação/genética , Síndrome Nefrótica/congênito , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Citoplasma/metabolismo , Feminino , Haplótipos , Humanos , Immunoblotting , Imunoprecipitação , Lactente , Rim/metabolismo , Rim/patologia , Masculino , Microscopia de Fluorescência , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/patologia , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Oligorribonucleotídeos Antissenso/farmacologia , Linhagem , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores
18.
J Hum Genet ; 63(2): 207-211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29208948

RESUMO

Episodic ataxias (EAs) are rare channelopathies characterized by recurrent ataxia and vertigo, having eight subtypes. Mutated genes were found in four of these eight subtypes (EA1, EA2, EA5, and EA6). To date, only four missense mutations in the Solute Carrier Family 1 Member 3 gene (SLC1A3) have been reported to cause EA6. SLC1A3 encodes excitatory amino-acid transporter 1, which is a trimeric transmembrane protein responsible for glutamate transport in the synaptic cleft. In this study, we found a novel missense mutation, c.383T>G (p.Met128Arg) in SLC1A3, in an EA patient by whole-exome sequencing. The modeled structural analysis suggested that p.Met128Arg may affect the hydrophobic transmembrane environment and protein function. Analysis of the pathogenicity of all mutations found in SLC1A3 to date using multiple prediction tools showed some advantage of using the Mendelian Clinically Applicable Pathogenicity (M-CAP) score. Various types of SLC1A3 variants, including nonsense mutations and indels, in the ExAC database suggest that the loss-of-function mechanism by SLC1A3 mutations is unlikely in EA6. The current mutation (p.Med128Arg) presumably has a gain-of-function effect as described in a previous report.


Assuntos
Ataxia/genética , Transportador 1 de Aminoácido Excitatório/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Criança , Transportador 1 de Aminoácido Excitatório/química , Humanos , Masculino , Modelos Moleculares
19.
J Hum Genet ; 63(4): 425-430, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29440706

RESUMO

Recurrent pregnancy loss is newly defined as more than two consecutive miscarriages. Recurrent pregnancy loss occurs in <5% of total pregnancies. The cause in approximately 40-60% of recurrent pregnancy loss cases remains elusive and must be determined. We investigated two unrelated Iranian consanguineous families with recurrent pregnancy loss. We performed exome sequencing using DNA from a miscarriage tissue and identified a homozygous NOP14 missense variant (c.[136C>G];[136C>G]) in both families. NOP14 is an evolutionally conserved protein among eukaryotes and is required for 18S rRNA processing and 40S ribosome biogenesis. Interestingly, in zebrafish, homozygous mutation of nop14 (possibly loss of function) resulting from retrovirus-mediated insertional mutagenesis led to embryonic lethality at 5 days after fertilization, mimicking early pregnancy loss in humans. Similarly, it is known that the nop14-null yeast is inviable. These data suggest that the homozygous NOP14 mutation is likely to cause recurrent pregnancy loss. Furthermore, this study shows that exome sequencing is very useful to determine the etiology of unsolved recurrent pregnancy loss.


Assuntos
Aborto Habitual/diagnóstico , Aborto Habitual/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Mutação , Proteínas Nucleares/genética , Alelos , Substituição de Aminoácidos , Mapeamento Cromossômico , Consanguinidade , Variações do Número de Cópias de DNA , Feminino , Humanos , Irã (Geográfico) , Linhagem , Fenótipo , Gravidez , Sequenciamento do Exoma
20.
Clin Genet ; 94(6): 538-547, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280376

RESUMO

N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Alelos , Sequência de Aminoácidos , Encéfalo/anormalidades , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Genótipo , Humanos , Masculino , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA