Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Rev ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989642

RESUMO

Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-ß (Aß) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aß and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1ß and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and ß-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.

2.
J Biol Chem ; 300(5): 107306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648940

RESUMO

Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-ß (Aß) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aß and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aß and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.


Assuntos
Doença de Alzheimer , Microglia , Zinco , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Microglia/metabolismo , Microglia/patologia , Humanos , Zinco/metabolismo , Animais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Encéfalo/metabolismo , Encéfalo/patologia
3.
BMC Genomics ; 23(1): 183, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247975

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and is the most common cause of late-onset dementia. Microglia, the primary innate immune cells of the central nervous system (CNS), have a complex role in AD neuropathology. In the initial stages of AD, microglia play a role in limiting pathology by removing amyloid-ß (Aß) by phagocytosis. In contrast, microglia also release pro-inflammatory cytokines and chemokines to promote neuroinflammation and exacerbate AD neuropathology. Therefore, investigating microglial gene networks could identify new targets for therapeutic strategies for AD. RESULTS: We identified 465 differentially expressed genes (DEG) in 5XFAD versus wild-type mice by microarray, 354 DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells using RNA-sequencing (RNA-seq), with 32 DEG common between both datasets. Analyses of the 32 common DEG uncovered numerous molecular functions and pathways involved in Aß phagocytosis and neuroinflammation associated with AD. Furthermore, multiplex ELISA confirmed the induction of several cytokines and chemokines in LPS-stimulated microglia. CONCLUSIONS: In summary, AD triggered multiple signaling pathways that regulate numerous genes in microglia, contributing to Aß phagocytosis and neuroinflammation. Overall, these data identified several regulatory factors and biomarkers in microglia that could be useful in further understanding AD neuropathology.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose
4.
J Neuroinflammation ; 17(1): 280, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958021

RESUMO

Alzheimer's disease (AD) is a progressive, late-onset dementia with no effective treatment available. Recent studies suggest that AD pathology is driven by age-related changes in metabolism. Alterations in metabolism, such as placing patients on a ketogenic diet, can alter cognition by an unknown mechanism. One of the ketone bodies produced as a result of ketogenesis, ß-hydroxybutyrate (BHB), is known to inhibit NLRP3 inflammasome activation. Therefore, we tested if BHB inhibition of the NLRP3 inflammasome reduces overall AD pathology in the 5XFAD mouse model of AD. Here, we find BHB levels are lower in red blood cells and brain parenchyma of AD patients when compared with non-AD controls. Furthermore, exogenous BHB administration reduced plaque formation, microgliosis, apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) speck formation, and caspase-1 activation in the 5XFAD mouse model of AD. Taken together, our findings demonstrate that BHB reduces AD pathology by inhibiting NLRP3 inflammasome activation. Additionally, our data suggest dietary or pharmacological approaches to increase BHB levels as promising therapeutic strategies for AD.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inflamassomos/antagonistas & inibidores , Ácido 3-Hidroxibutírico/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Feminino , Humanos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530706

RESUMO

Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.


Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
6.
Foodborne Pathog Dis ; 15(5): 253-261, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412766

RESUMO

Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is that it only expresses the fliC gene for bacterial motility (i.e., monophasic), while most Salmonella strains alternately express two flagellin genes (fliC and fljB). The goal of this study was to characterize the porcine response following inoculation with a multidrug-resistant (MDR) serovar I 4,[5],12:i:- isolate associated with a multistate pork outbreak to determine if the increased prevalence of serovar I 4,[5],12:i:- in swine is due to enhanced pathogenicity. Pigs were inoculated and subsequently evaluated for the ability of the isolate to colonize intestinal tissues, cause clinical symptoms, induce an immune response, and alter the fecal microbiota over a 7-day period. Pigs exhibited a significant increase in rectal temperature (fever) (p < 0.01) and fecal moisture content (diarrhea) (p < 0.05) at 2 days postinoculation (d.p.i.) compared with preinoculation (day 0). Serum analyses revealed significantly increased interferon-gamma (IFN-γ) levels at 2 (p ≤ 0.0001) and 3 (p < 0.01) d.p.i. compared with day 0, and antibodies against Salmonella lipopolysaccharide (LPS) were present in all pigs by 7 d.p.i. Serovar I 4,[5],12:i:- colonized porcine intestinal tissues and was shed in the feces throughout the 7-day study. Analysis of the 16S rRNA gene sequences demonstrated that the fecal microbiota was significantly altered following MDR serovar I 4,[5],12:i:- inoculation, with the largest shift observed between 0 and 7 d.p.i. Our data indicate that the pork outbreak-associated MDR serovar I 4,[5],12:i:- isolate induced transient clinical disease in swine and perturbed the gastrointestinal microbial community. The porcine response to MDR serovar I 4,[5],12:i:- is similar to previous studies with virulent biphasic Salmonella enterica serovar Typhimurium, suggesting that the absence of fljB does not substantially alter acute colonization or pathogenesis in pigs.


Assuntos
Farmacorresistência Bacteriana Múltipla , Flagelina/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Tipagem de Bacteriófagos , Surtos de Doenças , Fezes/microbiologia , Feminino , Microbiologia de Alimentos , Humanos , RNA Ribossômico 16S/genética , Carne Vermelha/microbiologia , Salmonelose Animal/epidemiologia , Salmonelose Animal/patologia , Salmonella typhimurium/genética , Sorogrupo , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Estados Unidos/epidemiologia
7.
Arch Microbiol ; 198(6): 541-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27017337

RESUMO

Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with D-glucosamine (D-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of ß-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella.


Assuntos
Proteínas de Bactérias/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidade , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Membrana Celular/fisiologia , Detergentes/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Humanos , Infecções por Salmonella/microbiologia , Salmonella enteritidis/enzimologia , Salmonella enteritidis/metabolismo , Virulência/genética
8.
Microb Pathog ; 89: 100-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26427881

RESUMO

Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.


Assuntos
Bactérias/enzimologia , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Óperon , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Bactérias/genética , Deleção de Genes
9.
Curr Microbiol ; 68(5): 621-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24420330

RESUMO

Salmonella enterica serovar Enteritidis (SE) infection in humans is often associated with the consumption of contaminated poultry products. Binding of the bacterium to the intestinal mucosa is a major pathogenic mechanism of Salmonella in poultry. Transposon mutagenesis identified flgC as a potential binding mutant of SE. Therefore, we hypothesize FlgC which plays a significant role in the binding ability of SE to the intestinal mucosa of poultry. To test our hypothesis, we created a mutant of SE in which flgC was deleted. We then tested the in vitro and in vivo binding ability of ∆flgC when compared to the wild-type SE strain. Our data showed a significant decrease in the binding ability of ∆flgC to intestinal epithelial cells as well as in the small intestine and cecum of poultry. Furthermore, the decrease in binding correlated to a defect in invasion as shown by a cell culture model using intestinal epithelial cells and bacterial recovery from the livers and spleens of chickens. Overall, these studies indicate FlgC is a major factor in the binding ability of Salmonella to the intestinal mucosa of poultry.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Corpos Basais/fisiologia , Células Epiteliais/microbiologia , Flagelos/fisiologia , Salmonella enteritidis/fisiologia , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Ceco/microbiologia , Galinhas , Flagelos/genética , Deleção de Genes , Humanos , Intestino Delgado/microbiologia , Fígado/microbiologia , Salmonella enteritidis/genética , Baço/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Int J Mol Sci ; 15(10): 18267-80, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25310651

RESUMO

Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s²U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , RNA de Transferência/metabolismo , Fatores de Virulência/metabolismo , Animais , Infecções Bacterianas/patologia , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Virulência
11.
J Neuroimmunol ; 391: 578364, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718558

RESUMO

Metabolic disorders are associated with several neurodegenerative diseases. We previously identified C-X-C motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10), as a major contributor to the type I interferon response in microglial-mediated neuroinflammation. Therefore, we hypothesized FDA-approved metabolic disorder drugs that attenuate CXCL10 secretion may be repurposed as a treatment for neurodegenerative diseases. Screening, dose curves, and cytotoxicity assays in LPS-stimulated microglia yielded treprostinil (hypertension), pitavastatin (hyperlipidemia), and eplerenone (hypertension) as candidates that significantly reduced CXCL10 secretion (in addition to other pro-inflammatory mediators) without impacting cell viability. Altogether, these data suggest metabolic disorder drugs that attenuate CXCL10 as potential treatments for neurodegenerative disease through mitigating microglial-mediated neuroinflammation.


Assuntos
Quimiocina CXCL10 , Microglia , Doenças Neuroinflamatórias , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Quimiocina CXCL10/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Camundongos , Quinolinas/farmacologia , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Anti-Hipertensivos/farmacologia , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade
12.
Microb Pathog ; 57: 1-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23375888

RESUMO

Salmonella is an important foodborne pathogen causing major public health problems throughout the world due to the consumption of contaminated food. Our previous studies have shown that deletion of glucose-inhibited division (gidA) gene significantly altered Salmonella virulence in both in vitro and in vivo models of infection. In Escherichia coli, GidA and MnmE have been shown to modify several bacterial factors by a post-transcriptional mechanism to modify tRNA. Therefore, we hypothesize that GidA and MnmE complex together to modulate virulence genes in Salmonella using a similar mechanism. To test our hypothesis, and to examine the relative contribution of GidA and MnmE in modulation of Salmonella virulence, we constructed gidA and mnmE single mutants as well as a gidA mnmE double mutant strain of Salmonella. Results from the in vitro data displayed a reduction in growth, motility, intracellular replication, and invasion of T84 intestinal epithelial cells in the mutant strains compared to the wild-type Salmonella strain. The in vivo data showed a significant attenuation of the mutant strains as indicated by the induction of inflammatory cytokines and chemokines, as well as in the severity of histopathological lesions in the liver and spleen, compared to mice infected with the wild-type strain. Also, a significant increase in the LD50 was observed in mice infected with the mutant strains, and mice immunized with the mutants were protected against a lethal dose of wild-type Salmonella. A pull-down assay indicated that Salmonella GidA and MnmE bind together, and HPLC analysis revealed that deletion of gidA and/or mnmE altered Salmonella tRNA modification. Overall, the data suggest MnmE and GidA bind together and use a post-transcriptional mechanism to modify tRNA to regulate Salmonella pathogenesis.


Assuntos
Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Salmonella/genética , Salmonella/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Mutação , Ligação Proteica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Virulência
13.
Curr Microbiol ; 67(3): 279-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579313

RESUMO

Glucose-inhibited division (GidA) protein is widely distributed in nature, and is highly conserved among bacteria and eukarya. In our previous study, a gidA mutant was attenuated in both in vitro and in vivo models of Salmonella infection. Furthermore, deletion of gidA resulted in a marked reduction in the expression of many virulence genes and proteins, suggesting a role for GidA in the regulation of Salmonella virulence. In this study, the effect of different environmental conditions (glucose, EDTA, and pH 5) on GidA expression in Salmonella was examined. Transcriptional analysis using real-time RT-PCR and a ß-galactosidase assay, displayed no differences in gidA transcription and promoter activity in different environmental conditions. Conversely, semiquantitative Western blot analysis revealed a significant increase in the GidA expression in Salmonella when grown under different environmental conditions. Salmonella in vitro virulence assays showed an increased virulence potential in the environmental conditions correlating to the increase in GidA expression. Together, our data indicate that GidA expression is modulated under different environmental conditions which correlate to increased Salmonella in vitro virulence.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Western Blotting , Ácido Edético/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase em Tempo Real , Virulência , Fatores de Virulência/metabolismo , beta-Galactosidase/análise
14.
Sci Rep ; 13(1): 14800, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684405

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques followed by intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. An unrestrained immune response by microglia, the resident cells of the central nervous system (CNS), leads to neuroinflammation which can amplify AD pathology. AD pathology is also driven by metabolic dysfunction with strong correlations between dementia and metabolic disorders such as diabetes, hypercholesterolemia, and hypertriglyceridemia. Since elevated cholesterol and triglyceride levels appear to be a major risk factor for developing AD, we investigated the lipid metabolism transcriptome in an AD versus non-AD state using RNA-sequencing (RNA-seq) and microarray datasets from N9 cells and murine microglia. We identified 52 differentially expressed genes (DEG) linked to lipid metabolism in LPS-stimulated N9 microglia versus unstimulated control cells using RNA-seq, 86 lipid metabolism DEG in 5XFAD versus wild-type mice by microarray, with 16 DEG common between both datasets. Functional enrichment and network analyses identified several biological processes and molecular functions, such as cholesterol homeostasis, insulin signaling, and triglyceride metabolism. Furthermore, therapeutic drugs targeting lipid metabolism DEG found in our study were identified. Focusing on drugs that target genes associated with lipid metabolism and neuroinflammation could provide new targets for AD drug development.


Assuntos
Doença de Alzheimer , Hipercolesterolemia , Animais , Camundongos , Doença de Alzheimer/genética , Metabolismo dos Lipídeos , Microglia , Transcriptoma , Doenças Neuroinflamatórias , Triglicerídeos
15.
J Neuroimmunol ; 375: 578031, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708632

RESUMO

Interferons play a major role in microglial-mediated neuroinflammation in Alzheimer's disease (AD). We investigated the interferon transcriptome (AD versus non-AD) using N9 and murine microglia. We identified 64 interferon-related differentially expressed genes (DEG) in LPS-stimulated N9 microglia versus control cells, 26 DEG in microglia from 5XFAD versus wild-type mice, with 13 DEG common to both datasets. Network analyses identified potential key mediators (Cxcl10, Ifit3) of the interferon response in AD. Gene-drug interaction analysis identified therapeutics targeting interferon-related genes. These data characterize the microglial interferon response in AD, providing new targets and therapeutics directed towards interferon-related neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Interferons/genética , Microglia , Doenças Neuroinflamatórias , Transcriptoma , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/genética
16.
Porcine Health Manag ; 9(1): 7, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782292

RESUMO

BACKGROUND: The 2017 Veterinary Feed Directive eliminated the use of medically important antibiotics for growth promotion of food animals; thus, alternative growth promoters are highly desirable by food animal producers to enhance animal health and reduce pathogen colonization, including the human foodborne pathogen Salmonella. ß(1-3)(1-6)-D-glucan (ß-glucan) is a soluble fiber with prebiotic characteristics; it has been shown to modulate immune and intestinal functions that strengthen swine resistance to health challenges such as bacterial infections when supplemented in the diets of growing pigs. The current study evaluated the effects of a ß-glucan product on gut microbial community structure as well as Salmonella shedding and intestinal colonization. RESULTS: Five-week-old pigs were fed a ß-glucan amended diet at 500 g/ton (n = 13) or a non-amended control diet (n = 14) for three weeks, followed by inoculation of the 27 pigs with 1 × 109 colony forming units of Salmonella enterica serovar Typhimurium strain UK1. While remaining on the respective diets, fecal samples collected at 2, 4, 7, and 16 days post-inoculation (dpi) were similar for Salmonella shedding counts between the two diets. At 16 dpi, Salmonella counts were significantly lower in the cecal contents of the ß-glucan-fed pigs (P = 0.0339) and a trend towards a reduction was observed in the Peyer's patches region of the ileum (P = 0.0790) compared to the control pigs. Pigs fed ß-glucan for three weeks exhibited an increase in members of the Clostridia class in their fecal microbial communities, and after inoculation with Salmonella, several potentially beneficial microorganisms were enriched in the microbiota of ß-glucan-fed pigs (Lactobacillus, Ruminococcaceae, Prevotellaceae, Veillonellaceae, Bifidobacterium and Olsenella). CONCLUSION: Administration of ß-glucan altered the swine gut microbiome and reduced Salmonella colonization in the cecal contents.

17.
Vet Microbiol ; 278: 109648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608625

RESUMO

Alternatives to antibiotics to improve animal performance, limit the negative impact of infectious disease, and/or reduce colonization with foodborne pathogens is a major focus of animal agricultural research. ß-glucans, a generally-recognized-as-safe (GRAS) product derived from various sources, are used in swine and can serve as both a prebiotic and/or stimulant of the immune system given the expression of ß-glucan receptors on immune cells. When supplied in the diet of nursery pigs, it is unclear how dietary additives, particularly those known to modulate immune status, impact immunogenicity and efficacy of mucosal-delivered vaccines. Salmonellosis is one of the most common bacterial foodborne infections in the United States, and consumption of contaminated pork is a major source of human infection. Reduction of foodborne Salmonella in pigs via vaccination is one strategy to reduce contamination risk and subsequently reduce human disease. We examined the ability of dietary ß-glucan to modulate fecal microbial diversity, and immunogenicity and efficacy of a mucosally-delivered, live-attenuated Salmonella vaccine during the nursery period. While dietaryß-glucan did modulate fecal alpha diversity, it did not alter the induction of peripheral Salmonella-specific IFN-γ secreting Tcells or Salmonella-specific IgA in oral fluids. In addition, vaccination reduced Salmonella enterica serovar Typhimurium fecal shedding and tissue colonization. Overall, addition of ß-glucan to the nursery diet of pigs impacted the microbiota but did not alter mucosal vaccine immunogenicity and efficacy.


Assuntos
Salmonelose Animal , Vacinas contra Salmonella , Doenças dos Suínos , beta-Glucanas , Suínos , Humanos , Animais , Imunogenicidade da Vacina , Salmonelose Animal/microbiologia , Dieta , Salmonella typhimurium , Vacinas Atenuadas , Doenças dos Suínos/microbiologia
18.
BMC Microbiol ; 12: 286, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23194372

RESUMO

BACKGROUND: Salmonella is often associated with gastrointestinal disease outbreaks in humans throughout the world due to the consumption of contaminated food. Our previous studies have shown that deletion of glucose-inhibited division gene (gidA) significantly attenuated Salmonella enterica serovar Typhimurium (STM) virulence in both in vitro and in vivo models of infection. Most importantly, immunization with the gidA mutant protected mice from a lethal dose challenge of wild-type STM. In this study, we further characterize the gidA mutant STM strain for potential use in a live-attenuated vaccine. RESULTS: The protective efficacy of immunization with the gidA mutant was evaluated by challenging immunized mice with a lethal dose of wild-type STM. Sera levels of IgG2a and IgG1, passive transfer of sera and cells, and cytokine profiling were performed to study the induction of humoral and cellular immune responses induced by immunization with the gidA mutant strain. Additionally, a lymphocyte proliferation assay was performed to gauge the splenocyte survival in response to treatment with STM cell lysate. Mice immunized with the gidA mutant strain were fully protected from a lethal dose challenge of wild-type STM. Naïve mice receiving either cells or sera from immunized mice were partially protected from a lethal dose challenge of wild-type STM. The lymphocyte proliferation assay displayed a significant response of splenocytes from immunized mice when compared to splenocytes from non-immunized control mice. Furthermore, the immunized mice displayed significantly higher levels of IgG1 and IgG2a with a marked increase in IgG1. Additionally, immunization with the gidA mutant strain evoked higher levels of IL-2, IFN-γ, and IL-10 cytokines in splenocytes induced with STM cell lysate. CONCLUSIONS: Together, the results demonstrate that immunization with the gidA mutant strain protects mice by inducing humoral and cellular immune responses with the humoral immune response potentially being the main mechanism of protection.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Fatores de Virulência/genética , Transferência Adotiva , Animais , Anticorpos Antibacterianos/sangue , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Imunização Passiva , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Vacinas contra Salmonella/genética , Salmonella typhimurium/genética , Análise de Sobrevida , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
19.
Arch Microbiol ; 194(6): 405-12, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22109813

RESUMO

Salmonella is an important food-borne pathogen that continues to plague the United States food industry. Characterization of bacterial factors involved in food-borne illnesses could help develop new ways to control salmonellosis. We have previously shown that deletion of glucose-inhibited division gene (gidA) significantly altered the virulence potential of Salmonella in both in vitro and in vivo models of infection. Most importantly, the gidA mutant cells displayed a filamentous morphology compared to the wild-type Salmonella cells. In our current study, we investigated the role of GidA in Salmonella cell division using fluorescence and electron microscopy, transcriptional, and proteomic assays. Scanning electron microscopy data indicated a filamentous morphology with few constrictions in the gidA mutant cells. The filamentation of the gidA mutant cells is most likely due to the defect in chromosome segregation, with little to no sign of septa formation observed using fluorescence and transmission electron microscopy. Furthermore, deletion of gidA altered the expression of many genes and proteins responsible for cell division and chromosome segregation as indicated by global transcriptional profiling and semi-quantitative western blot analysis. Taken together, our data indicate GidA as a potential regulator of Salmonella cell division genes.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular , Deleção de Genes , Salmonella typhimurium/genética , Segregação de Cromossomos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Varredura , Proteômica , Salmonella typhimurium/citologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/ultraestrutura , Virulência/genética
20.
IBRO Neurosci Rep ; 13: 31-37, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35711243

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder, and increasing evidence suggests AD pathology is driven by metabolic dysfunction in the brain. Zinc is the second most abundant trace element found in the human body and is required by all living organisms. Zinc is used extensively in many biological processes, and alterations in zinc levels are implicated in the pathogenesis of numerous diseases, including AD. Since small fluctuations in brain zinc levels appear to effect AD progression, we investigated the zinc-related transcriptional responses in an AD versus non-AD state using microarray and RNA-sequencing (RNA-seq) datasets from cultured cells, mice, and humans. We identified 582 zinc-related differentially expressed genes (DEG) in human dorsolateral prefrontal cortex samples of late-onset AD (LOAD) versus non-AD controls, 146 zinc-related DEG in 5XFAD versus wild-type mice, and 95 zinc-related DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells, with 19 zinc-related DEG common to all three datasets. Of the 19 common DEG, functional enrichment and network analyses identified several biological processes and molecular functions, such as mRNA destabilization and nucleic acid binding, which may be important in neuroinflammation and AD development. Furthermore, therapeutic drugs targeting zinc-related DEG in the human dataset were identified. Taken together, these data provide insights into zinc utilization for gene transcription during AD progression which may further our understanding of AD pathogenesis and could identify new targets for therapeutic strategies targeted towards AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA