Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35420656

RESUMO

For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.


Assuntos
Corpos Basais , Polaridade Celular , Actinas/metabolismo , Animais , Polaridade Celular/fisiologia , Cílios/metabolismo , Camundongos , Microtúbulos/metabolismo
2.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347437

RESUMO

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Assuntos
Dineínas do Axonema/metabolismo , Axonema/metabolismo , Transporte Biológico Ativo/genética , Movimento Celular/genética , Cílios/metabolismo , Embrião de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animais , Dineínas do Axonema/genética , Axonema/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Embrião de Mamíferos/fisiologia , Embrião de Mamíferos/ultraestrutura , Epêndima/embriologia , Epêndima/metabolismo , Epêndima/fisiologia , Imunofluorescência , Genótipo , Imunoprecipitação , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microtúbulos/genética , Mutação , Fenótipo , Traqueia/embriologia , Traqueia/metabolismo , Traqueia/fisiologia , Traqueia/ultraestrutura
3.
Am J Hum Genet ; 99(2): 460-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486780

RESUMO

Multiprotein complexes referred to as outer dynein arms (ODAs) develop the main mechanical force to generate the ciliary and flagellar beat. ODA defects are the most common cause of primary ciliary dyskinesia (PCD), a congenital disorder of ciliary beating, characterized by recurrent infections of the upper and lower airways, as well as by progressive lung failure and randomization of left-right body asymmetry. Using a whole-exome sequencing approach, we identified recessive loss-of-function mutations within TTC25 in three individuals from two unrelated families affected by PCD. Mice generated by CRISPR/Cas9 technology and carrying a deletion of exons 2 and 3 in Ttc25 presented with laterality defects. Consistently, we observed immotile nodal cilia and missing leftward flow via particle image velocimetry. Furthermore, transmission electron microscopy (TEM) analysis in TTC25-deficient mice revealed an absence of ODAs. Consistent with our findings in mice, we were able to show loss of the ciliary ODAs in humans via TEM and immunofluorescence (IF) analyses. Additionally, IF analyses revealed an absence of the ODA docking complex (ODA-DC), along with its known components CCDC114, CCDC151, and ARMC4. Co-immunoprecipitation revealed interaction between the ODA-DC component CCDC114 and TTC25. Thus, here we report TTC25 as a new member of the ODA-DC machinery in humans and mice.


Assuntos
Axonema/genética , Axonema/metabolismo , Proteínas de Transporte/genética , Cílios/patologia , Dineínas/química , Dineínas/metabolismo , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Mutação , Animais , Axonema/patologia , Axonema/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/genética , Dineínas/ultraestrutura , Exoma/genética , Éxons/genética , Imunofluorescência , Genes Recessivos , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Ligação Proteica , Xenopus , Proteínas de Xenopus/deficiência , Proteínas de Xenopus/genética
4.
Semin Cell Dev Biol ; 32: 80-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704359

RESUMO

Two TGFß-related proteins, Nodal and Lefty, are asymmetrically expressed and play central roles in establishing left-right (L-R) asymmetry of our body. Nodal acts as a left-side determinant whereas Lefty restricts Nodal activity to the left side by acting as a feedback inhibitor of Nodal. While the mechanism for symmetry breaking is variable among animals, the pair of Nodal and Lefty has a conserved role in the L-R asymmetry pathway. Function and regulation of Nodal and Lefty have been revealed in the last decades, but in this review we summarize the role of TGFß-related proteins together with more recent findings. We mainly discuss observations made with mouse embryos, unless indicated otherwise.


Assuntos
Padronização Corporal/genética , Fatores de Determinação Direita-Esquerda/genética , Proteína Nodal/genética , Transdução de Sinais/genética , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Modelos Genéticos , Proteína Nodal/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Dev Biol ; 395(2): 331-41, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25224222

RESUMO

The transcription factor Pitx2c is expressed in primordial visceral organs in a left-right (L-R) asymmetric manner and executes situs-specific morphogenesis. Here we show that Pitx2c is also L-R asymmetrically expressed in the developing mouse limb. Human PITX2c exhibits the same transcriptional activity in the mouse limb. The asymmetric expression of Pitx2c in the limb also exhibits dorsal-ventral and anterior-posterior polarities, being confined to the posterior-dorsal region of the left limb. Left-sided Pitx2c expression in the limb is regulated by Nodal signaling through a Nodal-responsive enhancer. Pitx2c is expressed in lateral plate mesoderm (LPM)-derived cells in the left limb that contribute to various limb connective tissues. The number of Pitx2c(+) cells in the left limb was found to be negatively regulated by Pitx2c itself. Although obvious defects were not apparent in the limb of mice lacking asymmetric Pitx2c expression, Pitx2c may regulate functional L-R asymmetry of the limb.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Animais , Primers do DNA/genética , Imunofluorescência , Galactosídeos , Técnicas de Introdução de Genes , Hibridização In Situ , Indóis , Camundongos , Camundongos Transgênicos , Tamoxifeno , Proteína Homeobox PITX2
6.
Nature ; 460(7252): 287-91, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19483677

RESUMO

Diverse histone modifications are catalysed and recognized by various specific proteins, establishing unique modification patterns that act as transcription signals. In particular, histone H3 trimethylation at lysine 36 (H3K36me3) is associated with actively transcribed regions and has been proposed to provide landmarks for continuing transcription; however, the control mechanisms and functions of H3K36me3 in higher eukaryotes are unknown. Here we show that the H3K36me3-specific histone methyltransferase (HMTase) Wolf-Hirschhorn syndrome candidate 1 (WHSC1, also known as NSD2 or MMSET) functions in transcriptional regulation together with developmental transcription factors whose defects overlap with the human disease Wolf-Hirschhorn syndrome (WHS). We found that mouse Whsc1, one of five putative Set2 homologues, governed H3K36me3 along euchromatin by associating with the cell-type-specific transcription factors Sall1, Sall4 and Nanog in embryonic stem cells, and Nkx2-5 in embryonic hearts, regulating the expression of their target genes. Whsc1-deficient mice showed growth retardation and various WHS-like midline defects, including congenital cardiovascular anomalies. The effects of Whsc1 haploinsufficiency were increased in Nkx2-5 heterozygous mutant hearts, indicating their functional link. We propose that WHSC1 functions together with developmental transcription factors to prevent the inappropriate transcription that can lead to various pathophysiologies.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteína Homeobox Nanog , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
7.
Dev Biol ; 381(1): 203-12, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23742838

RESUMO

Qilin is one of several genes in zebrafish whose mutation results in cystic kidney. We have now studied the role of its mouse ortholog, Cluap1, in embryonic development by generating Cluap1 knockout (Cluap1-/-) mice. Cluap1-/- embryos died mid-gestation manifesting impairment of ciliogenesis in various regions including the node and neural tube. The basal body was found to be properly docked to the apical membrane of cells in the mutant, but the axoneme failed to grow. Cluap1 is a ciliary protein and is preferentially localized at the base and tip of cilia. Hedgehog signaling, as revealed with a Pacthed1-lacZ reporter gene, was lost in Cluap1-/- embryos at embryonic day (E) 8.5 but was ectopically expanded at E9.0. The Cluap1 knockout embryos also failed to manifest left-right asymmetric expression of Nodal in the lateral plate, most likely as a result of the loss of Hedgehog signaling in node crown cells that in turn leads to pronounced down-regulation of Gdf1 expression in these cells. Crown cell-specific restoration of Cluap1 expression rescued Gdf1 expression in crown cells and left-sided Nodal expression in the lateral plate of mutant embryos. Our results suggest that Cluap1 contributes to ciliogenesis by regulating the intraflagellar transport (IFT) cycle at the base and tip of the cilium.


Assuntos
Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Morfogênese/genética , Animais , Padronização Corporal , Regulação para Baixo , Fibroblastos/metabolismo , Genes Reporter , Genótipo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Óperon Lac , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Transdução de Sinais
8.
Dev Biol ; 376(1): 23-30, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357539

RESUMO

In the node of mouse embryo, rotational movements of cilia generate an external liquid flow known as nodal flow, which determines left-right asymmetric gene expression. How nodal flow is converted into asymmetric gene expression is still controversial, but the increase of Ca(2+) levels in endodermal cells to the left of the node has been proposed to play a role. However, Ca(2+) signals inside the node itself have not yet been described. By our optimized Ca(2+) imaging method, we were able to observe dynamic Ca(2+) signals in the node in live mouse embryos. Pharmacological disruption of Ca(2+) signals did not affect ciliary movements or nodal flow, but did alter the expression patterns of the Nodal and Cerl-2 genes. Quantitative analyses of Ca(2+) signal frequencies and distributions showed that during left-right axis establishment, formerly symmetric Ca(2+) signals became biased to the left side. In iv/iv mutant embryos that showed randomized laterality due to ciliary immotility, Ca(2+) signals were found to be variously left-sided, right-sided, or bilateral, and thus symmetric on average. In Pkd2 mutant embryos, which lacked polycystin-2, a Ca(2+)-permeable cation channel necessary for left-right axis formation, the Ca(2+) signal frequency was lower than in wild-type embryos. Our data support a model in which dynamic Ca(2+) signals in the node are involved in left-right patterning.


Assuntos
Padronização Corporal/fisiologia , Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Organizadores Embrionários/embriologia , Animais , Cílios/fisiologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína Nodal/metabolismo , Organizadores Embrionários/metabolismo , Canais de Cátion TRPP/genética
9.
Development ; 138(10): 1913-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21471156

RESUMO

The essential roles of SHH in anteroposterior (AP) and AER-FGF signalling in proximodistal (PD) limb bud development are well understood. In addition, these morphoregulatory signals are key components of the self-regulatory SHH/GREM1/AER-FGF feedback signalling system that regulates distal progression of limb bud development. This study uncovers an additional signalling module required for coordinated progression of limb bud axis development. Transcriptome analysis using Shh-deficient mouse limb buds revealed that the expression of proximal genes was distally extended from early stages onwards, which pointed to a more prominent involvement of SHH in PD limb axis development. In particular, retinoic acid (RA) target genes were upregulated proximally, while the expression of the RA-inactivating Cyp26b1 enzyme was downregulated distally, pointing to increased RA activity in Shh-deficient mouse limb buds. Further genetic and molecular analysis established that Cyp26b1 expression is regulated by AER-FGF signalling. During initiation of limb bud outgrowth, the activation of Cyp26b1 expression creates a distal 'RA-free' domain, as indicated by complementary downregulation of a transcriptional sensor of RA activity. Subsequently, Cyp26b1 expression increases as a consequence of SHH-dependent upregulation of AER-FGF signalling. To better understand the underlying signalling interactions, computational simulations of the spatiotemporal expression patterns and interactions were generated. These simulations predicted the existence of an antagonistic AER-FGF/CYP26B1/RA signalling module, which was verified experimentally. In summary, SHH promotes distal progression of limb development by enhancing CYP26B1-mediated RA clearance as part of a signalling network linking the SHH/GREM1/AER-FGF feedback loop to the newly identified AER-FGF/CYP26B1/RA module.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Tretinoína/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Ativação Enzimática , Retroalimentação Fisiológica , Feminino , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais
10.
Mol Cell Neurosci ; 52: 128-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23147109

RESUMO

Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development.


Assuntos
Proteínas de Homeodomínio/metabolismo , Hipotálamo/embriologia , Neurogênese/fisiologia , Neurônios/metabolismo , Colículos Superiores/embriologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neurônios/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Colículos Superiores/metabolismo , Fatores de Transcrição/genética , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA