RESUMO
This paper contributes to the development of a Next Generation First Responder (NGFR) communication platform with the key goal of embedding it into a smart city technology infrastructure. The framework of this approach is a concept known as SmartHub, developed by the US Department of Homeland Security. The proposed embedding methodology complies with the standard categories and indicators of smart city performance. This paper offers two practice-centered extensions of the NGFR hub, which are also the main results: first, a cognitive workload monitoring of first responders as a basis for their performance assessment, monitoring, and improvement; and second, a highly sensitive problem of human society, the emergency assistance tools for individuals with disabilities. Both extensions explore various technological-societal dimensions of smart cities, including interoperability, standardization, and accessibility to assistive technologies for people with disabilities. Regarding cognitive workload monitoring, the core result is a novel AI formalism, an ensemble of machine learning processes aggregated using machine reasoning. This ensemble enables predictive situation assessment and self-aware computing, which is the basis of the digital twin concept. We experimentally demonstrate a specific component of a digital twin of an NGFR, a near-real-time monitoring of the NGFR cognitive workload. Regarding our second result, a problem of emergency assistance for individuals with disabilities that originated as accessibility to assistive technologies to promote disability inclusion, we provide the NGFR specification focusing on interactions based on AI formalism and using a unified hub platform. This paper also discusses a technology roadmap using the notion of the Emergency Management Cycle (EMC), a commonly accepted doctrine for managing disasters through the steps of mitigation, preparedness, response, and recovery. It positions the NGFR hub as a benchmark of the smart city emergency service.
Assuntos
Desastres , Serviços Médicos de Emergência , Socorristas , Humanos , Cidades , BenchmarkingRESUMO
Biometrics and biometric-enabled decision support systems (DSS) have become a mandatory part of complex dynamic systems such as security checkpoints, personal health monitoring systems, autonomous robots, and epidemiological surveillance. Risk, trust, and bias (R-T-B) are emerging measures of performance of such systems. The existing studies on the R-T-B impact on system performance mostly ignore the complementary nature of R-T-B and their causal relationships, for instance, risk of trust, risk of bias, and risk of trust over biases. This paper offers a complete taxonomy of the R-T-B causal performance regulators for the biometric-enabled DSS. The proposed novel taxonomy links the R-T-B assessment to the causal inference mechanism for reasoning in decision making. Practical details of the R-T-B assessment in the DSS are demonstrated using the experiments of assessing the trust in synthetic biometric and the risk of bias in face biometrics. The paper also outlines the emerging applications of the proposed approach beyond biometrics, including decision support for epidemiological surveillance such as for COVID-19 pandemics.