Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(22): 14874-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27191014

RESUMO

Water-solid interactions at the macroscopic level (beyond tens of nanometers) are often viewed as the coexistence of two bulk phases with a sharp interface in many areas spanning from biology to (geo)chemistry and various technological fields (membranes, microfluidics, coatings, etc.). Here we present experimental evidence indicating that such a view may be a significant oversimplification. High-resolution infrared and Raman experiments were performed in a 60 × 20 µm(2) quartz cavity, synthetically created and initially filled with demineralized water. The IR mapping (3 × 3 µm(2) beam size) performed using the SOLEIL synchrotron radiation source displays two important features: (i) the presence of a dangling free-OH component, a signature of hydrophobic inner walls; (ii) a shift of the OH-stretching band which essentially makes the 3200 cm(-1) sub-band predominate over the usual main component at around 3400 cm(-1). Raman maps confirmed these signatures (though less marked than IR's) and afforded a refined spatial distribution of this interfacial signal. This spatial resolution, statistically treated, results in a puzzling image of a 1-3 µm thick marked-liquid layer along the entire liquid-solid interface. The common view is then challenged by this strong evidence that a µm-thick layer analogous to an interphase forms at the solid-liquid interface. The thermodynamic counterpart of the vibrational shifts amounts to around +1 kJ mol(-1) at the interface with a rapidly decreasing signature towards the cavity centre, meaning that vicinal water may form a reactive layer, of micrometer thickness, expected to have an elevated melting point, a depressed boiling temperature, and enhanced solvent properties.

2.
J Phys Condens Matter ; 24(28): 284110, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22738888

RESUMO

Water is famous for its anomalies, most of which become dramatic in the supercooled region, where the liquid is metastable with respect to the solid. Another metastable region has been hitherto less studied: the region where the pressure is negative. Here we review the work on the liquid in the stretched state. Characterization of the properties of the metastable liquid before it breaks by nucleation of a vapour bubble (cavitation) is a challenging task. The recent measurement of the equation of state of the liquid at room temperature down to  - 26 MPa opens the way to more detailed information on water at low density. The threshold for cavitation in stretched water has also been studied by several methods. A puzzling discrepancy between experiments and theory remains unexplained. To evaluate how specific this behaviour is to water, we discuss the cavitation data on other liquids. We conclude with a description of the ongoing work in our groups.


Assuntos
Pressão , Água/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA