Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 13(24): 16453-16470, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37274405

RESUMO

Acetone is a dangerous material that poses a major risk to human health. To protect against its harmful impacts, a fluorescent biosensor 3-aminopropyl triethoxysilane capped ZnO quantum dots (APTES/ZnO QDs) was investigated to detect low concentrations of acetone. Numerous techniques, including Fourier transform infrared (FTIR), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), zeta potential, UV-vis absorption, and photoluminescence (PL), are used to thoroughly verify the successful synthesis of pristine ZnO QDs and APTES/ZnO QDs. The HRTEM micrograph showed that the average size distributions of ZnO QDs and APTES/ZnO QDs were spherical forms of 2.6 and 1.2 nm, respectively. This fluorescent probe dramatically increased its sensitivity toward acetone with a wide linear response range of 0.1-18 mM and a correlation coefficient (R2) of 0.9987. The detection limit of this sensing system for acetone is as low as 42 µM. The superior selectivity of acetone across numerous interfering bioanalytics is confirmed. Reproducibility and repeatability experiments presented relative standard deviations (RSD) of 2.2% and 2.4%, respectively. Finally, this developed sensor was applied successfully for detecting acetone in a diabetic patient's urine samples with a recovery percentage ranging from 97 to 102.7%.

2.
Talanta ; 253: 123908, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087411

RESUMO

A fluorescent biosensor based on garlic (Allium sativum L.) capped Ag nanoparticles (G-Ag NPs) has been synthesized for cholesterol detection. Pristine Ag NPs and G-Ag NPs were synthesized through the chemical reduction process. The effect of different capping agents such as 3-aminopropyltriethoxysilane (APTS), glutathione, 8-hydroxyquinoline, garlic/APTS, garlic/glutathione, and garlic/8-hydroxyquinoline on Ag NPs was evaluated. These NPs were characterized using Fourier transform infrared (FTIR), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), X-Ray diffraction (XRD), UV-visible spectra, and Zeta potential. The HRTEM micrographs illustrated that Ag NPs with particles size ranging from 2.98 to 14.34 nm were aggregated. G-Ag NPs images showed uniformly distributed spherical particles with particles size from 4.52 to 12.8 nm. The reduction in the plasmonic bands of Ag NPs and G-Ag NPs occurred by 96.4% and 11.7%, respectively after 12 months. The developed sensor for cholesterol based on the fluorescence enhancement had a linear response in a concentration range of 0.4-5.17 mM with a sensitivity of 4.36 Mm-1 and a limit of detection of 0.186 mM. The high selectivity toward cholesterol in presence of different interferes such as glucose, cysteine, glycine, urea, sucrose, nickel, and copper, and their mixture was evaluated. The applicability of this developed sensor for real serum samples was detected with a recovery percentage from 99.1 to 101.3%. Repeatability and reproducibility experiments displayed relative standard deviations (RSD) of 0.88% and 0.62%, respectively.


Assuntos
Alho , Nanopartículas Metálicas , Prata , Reprodutibilidade dos Testes , Colesterol , Glutationa
3.
Sci Rep ; 12(1): 11278, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789198

RESUMO

The aim of this work is to fabricate supercapacitor electrode based on poly (3-hexyl-thiophene-2, 5-diyl) (P3HT) and single-walled carbon nanotubes (SWCNTs) nanocomposites with different ratios onto a graphite sheet as a substrate with a wide voltage window in nonaqueous electrolyte. Structural, morphological and electrochemical properties of the prepared nanocomposites of P3HT/SWCNTs were studied and discussed. The electrochemical properties included cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) were investigated. The obtained results indicated that P3HT/SWCNTs nanocomposite possesses higher specific capacitance than that present in its individual component. The high electrochemical performance of the nanocomposite was due to formation of microporous structure which facilitates ions diffusion and electrolyte penetration in these pores. The morphological micrographs of the purified SWCNTs had buckypaper structure while the photomicrographs of P3HT/SWCNTs showed that SWCNTs appear behind and front of the P3HT nanospheres. The specific capacitance of 50% SWCNTs at 0.5 Ag-1 was found to be 245.8 Fg-1 compared with that of pure P3HT of 160.5 Fg-1.

4.
Sci Rep ; 12(1): 3611, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246573

RESUMO

An electrochemical deposition technique was used to fabricate polypyrrole (Ppy)/NiO nanocomposite electrodes for supercapacitors. The nanocomposite electrodes were characterized and investigated by Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The performance of supercapacitor electrodes of Ppy/NiO nanocomposite was enhanced compared with pristine Ppy electrode. It was found that the Ppy/NiO electrode electrodeposited at 4 A/cm-2 demonstrated the highest specific capacitance of 679 Fg-1 at 1 Ag-1 with an energy density of 94.4 Wh kg-1 and power density of 500.74 W kg-1. Capacitance retention of 83.9% of its initial capacitance after 1000 cycles at 1 Ag-1 was obtained. The high electrochemical performance of Ppy/NiO was due to the synergistic effect of NiO and Ppy, where a rich pores network-like structure made the electrolyte ions more easily accessible for Faradic reactions. This work provided a simple approach for preparing organic-inorganic composite materials as high-performance electrode materials for electrochemical supercapacitors.

5.
RSC Adv ; 12(52): 34095-34106, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505681

RESUMO

In order to protect human health from the adverse impacts of acrylamide and acetone, simple analytical processes are required to detect low concentrations of acrylamide and acetone. Dual functional garlic-capped silver nanoparticles (G-Ag NPs) have been used as fluorescent sensors for acrylamide and acetone. This technique depends on the quenching of the photoluminescence (PL) intensity of G-Ag NPs with the interaction of either acrylamide or acetone. This fluorescent probe presented high selectivity toward acrylamide with a wide linear response of 0.01-6 mM with a limit of detection (LOD) of 2.9 µM. Moreover, this probe also acted as a selective and sensitive fluorescent sensor for the detection of acetone in the range of 0.1-17 mM with LOD of 55 µM. The applicability of G-Ag NPs as a proposed sensor for acrylamide was evaluated using a potato chips sample with a recovery percentage of 102.4%. Acetone concentration is also quantified in human urine samples and the recoveries ranged from 98.8 to 101.7%. Repeatability and reproducibility studies for acrylamide and acetone offered relative standard deviation (RSD) of 0.9% and 1.5%, and 0.77% and 1.1%, respectively.

6.
Sci Rep ; 11(1): 5336, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674670

RESUMO

Nanotoxicology is argued and considered one of the emerging topics. In this study, polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA) capped silver nanoparticles (NPs)/graphene oxide (GO) quantum dots (QDs) nanocomposite (PANI/Ag (AMPSA)/GO QDs NC) as a nanoadsorbent has a potential for removal of toxic hexavalent chromium (Cr(VI)) ions from water. The acute toxicity of this NC was evaluated on Artemia salina and freshwater Ostracods (Cypridopsis vidua) larvae for 48 h. The measurements were made at 24 and 48 h with 3 repetitions. The 50% effective concentration (EC50) values of the NC were determined after the exposure of these organisms. According to the results of the optical microscope, it was found that both experimental organisms intake the NC. In the toxicity results of Ostracods, the NC had a highly toxic effect only at 250 mg/L after 48 h and the EC50 value was 157.6 ± 6.4 mg/L. For Artemia salina individuals, it was noted that they were less sensitive than the Ostracods and EC50 value was 476 ± 25.1 mg/L after 48 h. These results indicated that PANI/Ag (AMPSA)/GO QDs NC has low toxicity towards both investigated organisms.

7.
ACS Omega ; 6(3): 2167-2176, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521456

RESUMO

In this paper, nitrogen graphene quantum dots (N-GQDs) and copper indium sulfide/zinc sulfide (CIS/ZnS) QDs were synthesized via facile hydrothermal and aqueous solution routes, respectively. Herein, a fluorescent nanocomposite has been synthesized between N-GQDs and CIS/ZnS QDs in an aqueous phase. This nanocomposite was characterized by photoluminescence, Raman, and ultraviolet-visible (UV-vis) spectroscopies, high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). This fluorescent nanocomposite was developed as a highly sensitive, selective nonenzymatic cholesterol optical biosensor in 0.312-5 mM cholesterol. HRTEM micrographs confirmed the preparation of CIS/ZnS QDs and N-GQDs with average diameters of 3 and 5 nm, respectively. The as-prepared NG/CIS/ZnS QD nanocomposite had a high sensitivity for cholesterol with a wide linear range of concentration of 0.312-5 mM with an excellent correlation coefficient (R 2) of 0.9688 and limit of detection (LOD) of 0.222 mM.

8.
Sci Rep ; 11(1): 16261, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376750

RESUMO

Oily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm-2 h-1, while for the viscous oil as diesel was 1452.7 Lm-2 h-1.

9.
Sci Rep ; 10(1): 13617, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788693

RESUMO

Selective determination of toxic hexavalent chromium (Cr(VI)) is a stringent important due to its huge negative impact on the health and environment. Recently, the high sensitivity, rapidness, and cost-effectiveness of the fluorescent sensors for Cr(VI) have been developed. A fluorescent nanocomposite (NC) has been synthesized based on doped polyaniline (PANI), 2-acrylamido-2-methylpropanesulfonic acid (AMPSA) capped Ag nanoparticles (NPs) and graphene oxide (GO) quantum dots (QDs) via in situ reaction for highly selective sensing of Cr(VI) ions based on the luminescent quenching in the range from 0.01 to 7.5 mg/L. This NC showed an emission peak at 348 nm with a linear range from 0.01 to 0.05 mg/L and the low limit of detection (LOD) was 0.0065 mg/L (~ 6 µg/L). PANI/Ag (AMPSA) GO QDs NC displayed high selectivity for Cr(VI) over other common metal ions. Notably, the PANI/Ag (AMPSA) GO QDs NC can be used for distinguishing Cr(VI) and Cr(III) in solutions. The sensitive determination of Cr(VI) in real surface water samples was also confirmed and demonstrated recoveries in the range 95.3-99.2%. This NC will emerge as a new class of fluorescence materials that could be suitable for practical applications.

10.
Sci Rep ; 9(1): 16984, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740719

RESUMO

Quantum dots (QDs) with photostability show a potential application in optical sensing and biological imaging. In this work, ternary nanocomposite (NC) of high fluorescent polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA) capped silver nanoparticles (NPs)/graphene oxide quantum dots (PANI/Ag (AMPSA)/GO QDs) have been synthesized by in situ chemical oxidative polymerization of aniline in the presence of Ag (AMPSA) NPs and GO QDs. Ag (AMPSA) NPs and GO QDs were prepared by AgNO3 chemical reduction and glucose carbonization methods, respectively. The prepared materials were characterized using UV-visible, Fourier transform infrared (FTIR), photoluminescence and Raman spectroscopies, X-Ray diffractometer (XRD) and high- resolution transmission electron microscopy (HRTEM). HRTEM micrographs confirmed the preparation of GO QDs with an average size of 15 nm and Ag (AMPSA) NPs with an average size of 20 nm. PANI/Ag (AMPSA)/GO QDs NC showed high and stable emission peak at 348 nm. This PANI/Ag (AMPSA)/GO QDs NC can emerge as a new class of fluorescence materials that could be suitable for practical sensing applications.

11.
RSC Adv ; 9(67): 39187-39200, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540631

RESUMO

The aim of this study is to develop a ternary nanocomposite (NC) of polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA)-capped silver nanoparticles (NPs)/graphene oxide quantum dots (PANI/Ag (AMPSA)/GO QDs) as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water. PANI/Ag (AMPSA)/GO QDs NC was synthesized via in situ oxidative polymerization. The effects of pH, adsorbent dose, initial concentration, temperature, contact time, ionic strength and co-existing ions on the removal of Cr(vi) by PANI/Ag (AMPSA)/GO QDs were investigated. The PANI/Ag (AMPSA)/GO QDs NC (25.0 mg) removed 99.9% of Cr(vi) from an aqueous solution containing 60 mg L-1 Cr(vi) ions at pH 2. Energy dispersive X-ray (EDX) and inductively coupled plasma spectrometry (ICP) studies confirmed the adsorption of Cr(vi) and that some of the adsorbed Cr(vi) was reduced to Cr(iii). Cr(vi) removal by the PANI/Ag (AMPSA)/GO QDs NC followed the pseudo-second order kinetic model, and the removal was highly selective for Cr(vi) in the presence of other co-existing ions. In summary, the PANI/Ag (AMPSA)/GO QDs NC has potential as a novel adsorbent for Cr(vi).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA