Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 64(3): 283-291, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33091322

RESUMO

In recent years, several new asthma therapeutics have been developed. Although many of these agents show promise in treating allergic asthma, they are less effective against nonallergic forms of asthma. The gut microbiome has important roles in human health and disease, and a growing body of evidence indicates a link between the gut microbiome and asthma. Here, we review those data focusing on the role of the microbiome in mouse models of nonallergic asthma including obese asthma and asthma triggered by exposure to air pollutants. We describe the impact of antibiotics, diet, and early life events on airway responses to the air pollutant ozone, including in the setting of obesity. We also review potential mechanisms responsible for gut-lung interactions focusing on bacterial-derived metabolites, the immune system, and hormones. Finally, we discuss future prospects for gut microbiome-targeted therapies such as fecal microbiome transplantation, prebiotics, probiotics, and prudent use of antibiotics. Better understanding of the role of the microbiome in airway responses may lead to exploration of new microbiome-targeted therapies to control asthma, especially nonallergic forms of asthma.


Assuntos
Microbioma Gastrointestinal , Ozônio/efeitos adversos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/microbiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Pulmão/patologia , Hipersensibilidade Respiratória/tratamento farmacológico
2.
Am J Respir Cell Mol Biol ; 62(4): 503-512, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913653

RESUMO

Ozone causes airway hyperresponsiveness, a defining feature of asthma. We have reported that the gut microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness. Altering dietary fiber affects the gut microbiome. The purpose of this study was to determine the effects of dietary fiber on pulmonary responses to ozone and whether these effects differ by sex. We fed male and female mice fiber-free diets or diets enriched in one of two types of dietary fiber, cellulose and pectin, for 3 days before ozone exposure. Compared with control diets or pectin-enriched diets, cellulose-enriched diets attenuated ozone-induced airway hyperresponsiveness in male but not female mice. In contrast, fiber-free diets augmented responses to ozone in female but not male mice. Analysis of 16S rRNA sequencing of fecal DNA also indicated sex differences in the impact of dietary fiber on the gut microbiome and identified bacterial taxa that were associated with ozone-induced airway hyperresponsiveness. Our data suggest that microbiome-based therapies such as prebiotics may provide an alternative therapeutic strategy for air pollution-triggered asthma, but they indicate that such therapeutics may need to be tailored differently for males and females.


Assuntos
Fibras na Dieta/metabolismo , Pulmão/efeitos dos fármacos , Ozônio/farmacologia , Animais , Asma/metabolismo , Dieta/métodos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/metabolismo , Hipersensibilidade Respiratória/metabolismo , Caracteres Sexuais
3.
Respir Res ; 21(1): 98, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32326950

RESUMO

BACKGROUND: Obesity augments pulmonary responses to ozone. We have reported that IL-33 contributes to these effects of obesity in db/db mice. The purpose of this study was to determine whether IL-33 also contributes to obesity-related changes in the response to ozone in mice with diet-induced obesity. METHODS: Male wildtype C57BL/6 mice and mice deficient in ST2, the IL-33 receptor, were placed on chow or high fat diets for 12 weeks from weaning. Because the microbiome has been implicated in obesity-related changes in the pulmonary response to ozone, mice were either housed with other mice of the same genotype (same housed) or with mice of the opposite genotype (cohoused). Cohousing transfers the gut microbiome from one mouse to its cagemates. RESULTS: Diet-induced increases in body mass were not affected by ST2 deficiency or cohousing. In same housed mice, ST2 deficiency reduced ozone-induced airway hyperresponsiveness and neutrophil recruitment in chow-fed but not HFD-fed mice even though ST2 deficiency reduced bronchoalveolar lavage IL-5 in both diet groups. In chow-fed mice, cohousing abolished ST2-related reductions in ozone-induced airway hyperresponsiveness and neutrophil recruitment, but in HFD-fed mice, no effect of cohousing on these responses to ozone was observed. In chow-fed mice, ST2 deficiency and cohousing caused changes in the gut microbiome. High fat diet-feeding caused marked changes in the gut microbiome and overrode both ST2-related and cohousing-related differences in the gut microbiome observed in chow-fed mice. CONCLUSION: Our data indicate a role for IL-33 in pulmonary responses to ozone in chow-fed but not high fat diet-fed mice and are consistent with the hypothesis that these diet-related differences in the role of IL-33 are the result of changes in the gut microbiome.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Interleucina-33/metabolismo , Pulmão/metabolismo , Obesidade/metabolismo , Ozônio/toxicidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia
4.
J Oncol Pharm Pract ; 26(2): 306-311, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31006341

RESUMO

BACKGROUND: Phenazopyridine is a urinary tract analgesic indicated for short-term treatment of irritation in the lower urinary tract. Despite the lack of evidence for extended use, it is often used in varying durations for supportive care for cancer patients with radiation-induced cystitis. The objective of this study was to compare the incidence of adverse drug reactions in patients with radiation cystitis receiving long-term phenazopyridine (>14-day supply) compared to a matched comparator group. METHODS: This retrospective cohort study compared adverse events among cancer patients with and without phenazopyridine exposure. Included patients received radiation and at least one chronic medication between 1 July 2008 and 30 June 2017. The phenazopyridine group also received >14-day supply of phenazopyridine during the study period. Patients were matched based on gender, age (±5 years), cancer diagnosis, and palliative or curative treatment intent. Data collection occurred at baseline, during the time of presumed exposure, and through the end of the study period for surveillance purposes. RESULTS: A total of 272 patients received phenazopyridine for >14-day supply during the study period. Of these, 90 patients were included and matched to an equal number of patients in the comparator group. The included patients were similar between groups and were largely male with a diagnosis of prostate cancer. Most patients received between a 30- and 60-day supply of phenazopyridine. There were a total of 13 adverse drug reactions in the phenazopyridine group and 18 in the comparator group (p = 0.32). No differences were identified between the phenazopyridine and comparator groups for the incidence of individual adverse drug reactions, emergency department visits, hospitalizations, or new diagnoses of hepatocellular or colorectal cancer. CONCLUSION: There was no difference in adverse drug reactions among patients receiving phenazopyridine for >14 days compared to a matched comparator group. The overall incidence of adverse events in both groups was low.


Assuntos
Cistite/tratamento farmacológico , Fenazopiridina/administração & dosagem , Fenazopiridina/efeitos adversos , Lesões por Radiação/tratamento farmacológico , Idoso , Estudos de Coortes , Cistite/diagnóstico , Esquema de Medicação , Humanos , Masculino , Pessoa de Meia-Idade , Lesões por Radiação/diagnóstico , Estudos Retrospectivos
5.
Am J Respir Cell Mol Biol ; 60(2): 198-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30240285

RESUMO

We have previously reported that the mouse gut microbiome contributes to pulmonary responses to ozone, a common asthma trigger, and that short-chain fatty acids, end products of bacterial fermentation, likely contribute to this role of the microbiome. A growing body of evidence indicates that there are sex-related differences in gut microbiota and these differences can have important functional consequences. The purpose of this study was to determine whether there are sex-related differences in the impact of the gut microbiota on pulmonary responses to ozone. After acute exposure to ozone, male mice developed greater airway hyperresponsiveness than female mice. This difference was abolished after antibiotic ablation of the gut microbiome. Moreover, weanling female pups housed in cages conditioned by adult male mice developed greater ozone-induced airway hyperresponsiveness than weanling female pups raised in cages conditioned by adult females. Finally, ad libitum oral administration via drinking water of the short-chain fatty acid propionate resulted in augmented ozone-induced airway hyperresponsiveness in male, but not female, mice. Overall, these data are consistent with the hypothesis that the microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness, likely as a result of sex differences in the response to short-chain fatty acids.


Assuntos
Pulmão/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Ozônio/efeitos adversos , Hipersensibilidade Respiratória/microbiologia , Animais , Antibacterianos/farmacologia , Líquido da Lavagem Broncoalveolar/microbiologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/tratamento farmacológico , Fatores Sexuais
6.
Am J Respir Cell Mol Biol ; 61(6): 702-712, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31144984

RESUMO

Obesity is a risk factor for asthma, especially nonatopic asthma, and attenuates the efficacy of standard asthma therapeutics. Obesity also augments pulmonary responses to ozone, a nonatopic asthma trigger. The purpose of this study was to determine whether obesity-related alterations in gut microbiota contribute to these augmented responses to ozone. Ozone-induced increases in airway responsiveness, a canonical feature of asthma, were greater in obese db/db mice than in lean wild-type control mice. Depletion of gut microbiota with a cocktail of antibiotics attenuated obesity-related increases in the response to ozone, indicating a role for microbiota. Moreover, ozone-induced airway hyperresponsiveness was greater in germ-free mice that had been reconstituted with colonic contents of db/db than in wild-type mice. In addition, compared with dietary supplementation with the nonfermentable fiber cellulose, dietary supplementation with the fermentable fiber pectin attenuated obesity-related increases in the pulmonary response to ozone, likely by reducing ozone-induced release of IL-17A. Our data indicate a role for microbiota in obesity-related increases in the response to an asthma trigger and suggest that microbiome-based therapies such as prebiotics may provide an alternative therapeutic strategy for obese patients with asthma.


Assuntos
Microbioma Gastrointestinal/fisiologia , Obesidade/complicações , Ozônio/toxicidade , Hipersensibilidade Respiratória/etiologia , Resistência das Vias Respiratórias , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Asma/etiologia , Asma/terapia , Celulose/administração & dosagem , Fibras na Dieta/administração & dosagem , Transplante de Microbiota Fecal , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/microbiologia , Obesidade/fisiopatologia , Pectinas/administração & dosagem , Pectinas/uso terapêutico , Receptores para Leptina/deficiência , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/dietoterapia , Hipersensibilidade Respiratória/microbiologia
7.
Respir Res ; 20(1): 197, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455422

RESUMO

BACKGROUND: Interleukin-33 is released in the airways following acute ozone exposure and has the ability to cause airway hyperresponsiveness, a defining feature of asthma. Ozone causes greater airway hyperresponsiveness in male than female mice. Moreover, sex differences in the gut microbiome account for sex differences in this response to ozone. The purpose of this study was to determine whether there were sex differences in the role of interleukin-33 in ozone-induced airway hyperresponsiveness and to examine the role of the microbiome in these events. METHODS: Wildtype mice and mice genetically deficient in ST2, the interleukin-33 receptor, were housed from weaning with either other mice of the same genotype and sex, or with mice of the same sex but opposite genotype. At 15 weeks of age, fecal pellets were harvested for 16S rRNA sequencing and the mice were then exposed to air or ozone. Airway responsiveness was measured and a bronchoalveolar lavage was performed 24 h after exposure. RESULTS: In same-housed mice, ozone-induced airway hyperresponsiveness was greater in male than female wildtype mice. ST2 deficiency reduced ozone-induced airway hyperresponsiveness in male but not female mice and abolished sex differences in the response to ozone. However, sex differences in the role of interleukin-33 were unrelated to type 2 cytokine release: ozone-induced increases in bronchoalveolar lavage interleukin-5 were greater in females than males and ST2 deficiency virtually abolished interleukin-5 in both sexes. Since gut microbiota contribute to sex differences in ozone-induced airway hyperresponsiveness, we examined the role of the microbiome in these ST2-dependent sex differences. To do so, we cohoused wildtype and ST2 deficient mice, a situation that allows for transfer of microbiota among cage-mates. Cohousing altered the gut microbial community structure, as indicated by 16S rRNA gene sequencing of fecal DNA and reversed the effect of ST2 deficiency on pulmonary responses to ozone in male mice. CONCLUSIONS: The data indicate that the interleukin-33 /ST2 pathway contributes to ozone-induced airway hyperresponsiveness in male mice and suggest that the role of interleukin-33 is mediated at the level of the gut microbiome.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Interleucina-33/metabolismo , Microbiota/efeitos dos fármacos , Ozônio/toxicidade , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Animais , Feminino , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/fisiologia , Ozônio/administração & dosagem
8.
J Allergy Clin Immunol ; 142(5): 1469-1478.e2, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29330013

RESUMO

BACKGROUND: Genetic variants in the chromosomal region 17q21 are consistently associated with asthma. However, mechanistic studies have not yet linked any of the associated variants to a function that could influence asthma, and as a result, the identity of the asthma gene(s) remains elusive. OBJECTIVES: We sought to identify and characterize functional variants in the 17q21 locus. METHODS: We used the Exome Aggregation Consortium browser to identify coding (amino acid-changing) variants in the 17q21 locus. We obtained asthma association measures for these variants in both the Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort (16,274 cases and 38,269 matched controls) and the EVE Consortium study (5,303 asthma cases and 12,560 individuals). Gene expression and protein localization were determined by quantitative RT-PCR and fluorescence immunostaining, respectively. Molecular and cellular studies were performed to determine the functional effects of coding variants. RESULTS: Two coding variants (rs2305480 and rs11078928) of the gasdermin B (GSDMB) gene in the 17q21 locus were associated with lower asthma risk in both GERA (odds ratio, 0.92; P = 1.01 × 10-6) and EVE (odds ratio, 0.85; joint PEVE = 1.31 × 10-13). In GERA, rs11078928 had a minor allele frequency (MAF) of 0.45 in unaffected (nonasthmatic) controls and 0.43 in asthma cases. For European Americans in EVE, the MAF of rs2305480 was 0.45 for controls and 0.39 for cases; for all EVE subjects, the MAF was 0.32 for controls and 0.27 for cases. GSDMB is highly expressed in differentiated airway epithelial cells, including the ciliated cells. We found that, when the GSDMB protein is cleaved by inflammatory caspase-1 to release its N-terminal fragment, potent pyroptotic cell death is induced. The splice variant rs11078928 deletes the entire exon 6, which encodes 13 amino acids in the critical N-terminus, and abolishes the pyroptotic activity of the GSDMB protein. CONCLUSIONS: Our study identified a functional asthma variant in the GSDMB gene of the 17q21 locus and implicates GSDMB-mediated epithelial cell pyroptosis in pathogenesis.


Assuntos
Asma/genética , Células Epiteliais/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Adulto , Brônquios/citologia , Células Cultivadas , Éxons , Feminino , Variação Genética , Humanos , Masculino , Risco
9.
Allergol Int ; 68(2): 135-142, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30509734

RESUMO

Obesity is an important global health issue for both children and adults. Obesity increases the prevalence and incidence of asthma and also increases the risk for severe asthma. Here we describe the features of severe asthma phenotypes for which obesity is a defining characteristic, including steroid resistance, airway inflammation, and co-morbidities. We also review current concepts regarding the mechanistic basis for the impact of obesity in severe asthma, including possible roles for vitamin D deficiency, systemic inflammation, and the microbiome. Finally, we describe data indicating a role for diet, weight loss, and exercise in the treatment of severe asthma with obesity. Better understanding of the mechanistic basis for the role of obesity in severe asthma could lead to new therapeutic options for this population.


Assuntos
Asma/etiologia , Obesidade/complicações , Animais , Humanos , Fatores de Risco , Índice de Gravidade de Doença
10.
Am J Respir Cell Mol Biol ; 59(3): 346-354, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29529379

RESUMO

Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.


Assuntos
Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Ozônio/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Camundongos , Microbiota/fisiologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
Am J Respir Cell Mol Biol ; 58(3): 341-351, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28957638

RESUMO

Ozone and obesity both increase IL-17A in the lungs. In mice, obesity augments the airway hyperresponsiveness and neutrophil recruitment induced by acute ozone exposure. Therefore, we examined the role of IL-17A in obesity-related increases in the response to ozone observed in obese mice. Lean wild-type and obese db/db mice were pretreated with IL-17A-blocking or isotype antibodies, exposed to air or ozone (2 ppm for 3 h), and evaluated 24 hours later. Microarray analysis of lung tissue gene expression was used to examine the mechanistic basis for effects of anti-IL-17A. Compared with lean mice, ozone-exposed obese mice had greater concentrations of BAL IL-17A and greater numbers of pulmonary IL-17A+ cells. Ozone-induced increases in BAL IL-23 and CCL20, cytokines important for IL-17A+ cell recruitment and activation, were also greater in obese mice. Anti-IL-17A treatment reduced ozone-induced airway hyperresponsiveness toward levels observed in lean mice. Anti-IL-17A treatment also reduced BAL neutrophils in both lean and obese mice, possibly because of reductions in CXCL1. Microarray analysis identified gastrin-releasing peptide (GRP) receptor (Grpr) among those genes that were both elevated in the lungs of obese mice after ozone exposure and reduced after anti-IL-17A treatment. Furthermore, ozone exposure increased BAL GRP to a greater extent in obese than in lean mice, and GRP-neutralizing antibody treatment reduced obesity-related increases in ozone-induced airway hyperresponsiveness and neutrophil recruitment. Our data indicate that IL-17A contributes to augmented responses to ozone in db/db mice. Furthermore, IL-17A appears to act at least in part by inducing expression of Grpr.


Assuntos
Peptídeo Liberador de Gastrina/imunologia , Interleucina-17/imunologia , Obesidade/patologia , Ozônio/toxicidade , Receptores da Bombesina/metabolismo , Hipersensibilidade Respiratória/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Quimiocina CCL20/imunologia , Quimiocina CXCL1/imunologia , Feminino , Subunidade p19 da Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptores da Bombesina/genética
12.
Physiology (Bethesda) ; 31(2): 108-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26889016

RESUMO

Obesity is a risk factor for asthma, but standard asthma drugs have reduced efficacy in the obese. Obesity alters the gastrointestinal microbial community structure. This change in structure contributes to some obesity-related conditions and also could be contributing to obesity-related asthma. Although currently unexplored, obesity may also be altering lung microbiota. Understanding the role of microbiota in obesity-related asthma could lead to novel treatments for these patients.


Assuntos
Asma/microbiologia , Microbiota/fisiologia , Obesidade/microbiologia , Animais , Asma/complicações , Asma/fisiopatologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Humanos , Pulmão/microbiologia , Pulmão/fisiopatologia , Obesidade/complicações , Obesidade/fisiopatologia , Fatores de Risco
13.
Am J Respir Cell Mol Biol ; 54(5): 609-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26949916

RESUMO

Obesity is a risk factor for asthma, but obese subjects with asthma respond poorly to standard asthma drugs. Obesity also alters gut bacterial community structure. Obesity-related changes in gut bacteria contribute to weight gain and other obesity-related conditions, including insulin resistance and systemic inflammation. Here, we review the rationale for the hypothesis that obesity-related changes in gut bacteria may also play a role in obesity-related asthma. The metabolomes of the liver, serum, urine, and adipose tissue are altered in obesity. Gut bacteria produce a large number of metabolites, which can reach the blood and circulate to other organs, and gut bacteria-derived metabolites have been shown to contribute to disease processes outside the gastrointestinal tract, including cardiovascular disease. Here, we describe the potential roles for two such classes of metabolites in obesity-related asthma: short-chain fatty acids and bile acids. Greater understanding of the role of microbiota in obesity-related asthma could lead to novel microbiota-based treatments for these hard-to-treat patients.


Assuntos
Asma/metabolismo , Asma/microbiologia , Microbioma Gastrointestinal , Metaboloma , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Asma/complicações , Humanos , Modelos Biológicos , Obesidade/complicações
14.
Am J Respir Cell Mol Biol ; 54(4): 524-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26407210

RESUMO

Tissue factor (TF) is best known as a cellular initiator of coagulation, but it is also a multifunctional protein that has been implicated in multiple pathophysiologic conditions, including asthma. In the lung, airway epithelial cells express TF, but it is unknown how TF expression is regulated by asthma-associated mediators. We investigated the role of IL-13, a type 2 cytokine, alone and in combination with compressive stress, which mimics asthmatic bronchoconstriction, on TF expression and release of TF-positive extracellular vesicles from primary normal human bronchial epithelial cells. Well-differentiated normal human bronchial epithelial cells were treated with IL-13 and compressive stress, alone and in combination. TF mRNA, protein and activity were measured in the cells and conditioned media. TF was also measured in the bronchoalveolar lavage (BAL) fluid of allergen-challenged mice and patients with asthma. IL-13 and compressive stress increased TF expression, but only compressive stress induced TF-positive extracellular vesicle release. Pretreatment with IL-13 augmented compressive stress-induced TF expression and release. TF protein and activity in BAL fluid were increased in allergen-sensitized and -challenged mice. TF was elevated in the BAL fluid of patients with mild asthma after an allergen challenge. Our in vitro and in vivo data indicate close cooperation between mechanical and inflammatory stimuli on TF expression and release of TF-positive extracellular vesicles in the lungs, which may contribute to pathophysiology of asthma.


Assuntos
Brônquios/metabolismo , Interleucina-13/fisiologia , Estresse Fisiológico , Tromboplastina/metabolismo , Brônquios/citologia , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Ovalbumina/administração & dosagem , RNA Mensageiro/genética , Tromboplastina/genética
15.
Nat Mater ; 14(10): 1040-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237129

RESUMO

From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems-both inert and living-have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.


Assuntos
Asma/fisiopatologia , Brônquios/fisiopatologia , Forma Celular , Epitélio/patologia , Adesão Celular , Simulação por Computador , Células Epiteliais/citologia , Humanos , Modelos Biológicos , Software , Estresse Mecânico
16.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1168-77, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25840999

RESUMO

Innate airway hyperresponsiveness (AHR) and augmented responses to ozone, an asthma trigger, are characteristics of obese mice. Systemic inflammation, a condition of increased circulating concentrations of inflammatory moieties, occurs in obesity. We hypothesized that TNF-α, via its effects as a master effector of this systemic inflammation, regulates innate AHR and augmented responses to ozone in obese mice. Therefore, we examined pulmonary inflammation and airway responsiveness in unexposed or ozone-exposed (2 ppm for 3 h) lean wild-type and obese Cpe(fat) mice that were TNF-α sufficient or deficient. Cpe(fat) mice lack carboxypeptidase E, which regulates satiety. Compared with wild type, Cpe(fat) mice had elevated serum IL-17A, G-CSF, KC, MCP-1, IL-9, MIG, and leptin, indicating systemic inflammation. Despite reductions in most of these moieties in TNF-α-deficient vs. -sufficient Cpe(fat) mice, we observed no substantial difference in airway responsiveness in these two groups of mice. Ozone-induced increases in bronchoalveolar lavage (BAL) neutrophils and macrophages were lower, but ozone-induced AHR and increases in BAL hyaluronan, osteopontin, IL-13, and protein carbonyls, a marker of oxidative stress, were augmented in TNF-α-deficient vs. -sufficient Cpe(fat) mice. Our data indicate that TNF-α has an important role in promoting the systemic inflammation but not the innate AHR of obesity, suggesting that the systemic inflammation of obesity is not the major driver of this AHR. TNF-α is required for the augmented effects of acute ozone exposure on pulmonary inflammatory cell recruitment in obese mice, whereas TNF-α protects against ozone-induced AHR in obese mice, possibly by suppressing ozone-induced oxidative stress.


Assuntos
Asma/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Asma/induzido quimicamente , Asma/metabolismo , Feminino , Expressão Gênica , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Infiltração de Neutrófilos , Estresse Oxidativo , Ozônio
17.
Am J Physiol Lung Cell Mol Physiol ; 309(7): L736-46, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26276827

RESUMO

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.


Assuntos
Hiper-Reatividade Brônquica , Oxidantes Fotoquímicos/efeitos adversos , Ozônio/efeitos adversos , Pneumonia , Quinases Associadas a rho/biossíntese , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Osteopontina/genética , Osteopontina/metabolismo , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Quinases Associadas a rho/genética
18.
Clin Exp Allergy ; 45(2): 457-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25323425

RESUMO

BACKGROUND: Major features of allergic asthma include airway hyperresponsiveness (AHR), eosinophilic inflammation, and goblet cell metaplasia. Rho kinase (ROCK) is a serine/threonine protein kinase that regulates the actin cytoskeleton. By doing so, it can modulate airway smooth muscle cell contraction and leucocyte migration and proliferation. This study was designed to determine the contributions of the two ROCK isoforms, ROCK1 and ROCK2, to AHR, inflammation and goblet cell metaplasia in a mast cell-dependent model of allergic airways disease. METHODS AND RESULTS: Repeated intranasal challenges with OVA caused AHR, eosinophilic inflammation, and goblet cell hyperplasia in wild-type (WT) mice. OVA-induced AHR was partially or completely abrogated in mice haploinsufficient for ROCK2 (ROCK2(+/-) ) or ROCK1 (ROCK1(+/-) ), respectively. In contrast, there was no effect of ROCK insufficiency on allergic airways inflammation, although both ROCK1 and ROCK2 insufficiency attenuated mast cell degranulation. Goblet cell hyperplasia, as indicated by PAS staining, was not different in ROCK1(+/-) vs. WT mice. However, in ROCK2(+/-) mice, goblet cell hyperplasia was reduced in medium but not large airways. Maximal acetylcholine-induced force generation was reduced in tracheal rings from ROCK1(+/-) and ROCK2(+/-) vs. WT mice. The ROCK inhibitor, fasudil, also reduced airway responsiveness in OVA-challenged mice, without affecting inflammatory responses. CONCLUSION: In a mast cell model of allergic airways disease, ROCK1 and ROCK2 both contribute to AHR, likely through direct effects on smooth muscle cell and effects on mast cell degranulation. In addition, ROCK2 but not ROCK1 plays a role in allergen-induced goblet cell hyperplasia.


Assuntos
Hipersensibilidade Respiratória/enzimologia , Quinases Associadas a rho/metabolismo , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Feminino , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Mediadores da Inflamação/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Ovalbumina/imunologia , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Células Th2/imunologia , Células Th2/metabolismo , Quinases Associadas a rho/genética
19.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L508-20, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381131

RESUMO

Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo(-/-)) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo(-/-) mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo(-/-)/IL-6(-/-)) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo(-/-) vs. wild-type mice, but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. IL-17A(+) F4/80(+) cells and IL-17A(+) γδ T cells were also reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice exposed to ozone. Only BAL neutrophils were reduced in IL-6(-/-) vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1(+)F4/80(-)CD11c(-) cells, whereas in Adipo(-/-) mice F4/80(+)CD11c(+) cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo(-/-) vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo(-/-) vs. wild-type mice but reduced in Adipo(-/-)/IL-6(-/-) vs. Adipo(-/-) mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo(-/-) mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF.


Assuntos
Adiponectina/deficiência , Inflamação/imunologia , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Ozônio/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-6/genética , Pulmão/metabolismo , Contagem de Linfócitos , Macrófagos Alveolares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Oxidantes Fotoquímicos/farmacologia , RNA Mensageiro/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteína Amiloide A Sérica/genética , Linfócitos T/citologia
20.
J Immunol ; 188(9): 4558-67, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22474022

RESUMO

Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48-72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo(-/-)) and wild-type mice were exposed to ozone or to room air. In wild-type mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone-induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, keratinocyte-derived chemokine, LPS-induced CXC chemokine, and G-CSF were augmented in Adipo(-/-) versus wild-type mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo(-/-) versus wild-type mice. Moreover, compared with control Ab, anti-IL-17A Ab attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo(-/-) but not in wild-type mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo(-/-) mice. Flow cytometric analysis of lung cells revealed that the number of CD45(+)/F4/80(+)/IL-17A(+) macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wild-type mice and further increased in Adipo(-/-) mice. The IL-17(+) macrophages were CD11c(-) (interstitial macrophages), whereas CD11c(+) macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended low-dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells.


Assuntos
Adiponectina/imunologia , Interleucina-17/imunologia , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Oxidantes Fotoquímicos/efeitos adversos , Ozônio/efeitos adversos , Pneumonia/imunologia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Lavagem Broncoalveolar , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Interleucina-17/genética , Interleucina-17/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA