Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37146613

RESUMO

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , beta-Arrestinas , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Bicamadas Lipídicas , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular
2.
Cell ; 186(22): 4956-4973.e21, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37852260

RESUMO

The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.


Assuntos
Anafilatoxinas , Receptores de Complemento , Transdução de Sinais , Anafilatoxinas/metabolismo , Complemento C3a/metabolismo , Imunidade Inata , Receptores de Complemento/metabolismo , Humanos , Animais , Camundongos
3.
Cell ; 180(6): 1041-1043, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169216

RESUMO

ß-arrestins (ßarrs) play multifaceted roles in the signaling and regulation of G-protein-coupled receptors (GPCRs) including their desensitization and endocytosis. Recently determined cryo-EM structures of two different GPCRs in complex with ßarr1 provide the first glimpse of GPCR-ßarr engagement and a structural framework to understand their interaction.


Assuntos
Receptores Acoplados a Proteínas G/ultraestrutura , beta-Arrestinas/metabolismo , beta-Arrestinas/ultraestrutura , Arrestinas/metabolismo , Endocitose/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Fosforilação , Ligação Proteica , Isoformas de Proteínas/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo
4.
Mol Cell ; 84(3): 404-408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306999

RESUMO

To celebrate the 50th anniversary of Cell Press and the Cell focus issue on structural biology, we discussed with scientists working across diverse fields how AlphaFold has changed their research and brought structural biology to the masses.


Assuntos
Aniversários e Eventos Especiais , Biologia Molecular
5.
Cell ; 166(4): 907-919, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27499021

RESUMO

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Endossomos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Microscopia Eletrônica , Complexos Multiproteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
6.
Mol Cell ; 83(12): 2108-2121.e7, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244255

RESUMO

The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2. We identified several new CCR5 phosphorylation sites necessary for stable arrestin2 complex formation. Structures of arrestin2 in the apo form and complexes with CCR5 C-terminal phosphopeptides, together with NMR, biochemical, and functional assays, revealed three phosphoresidues in a pXpp motif that are essential for arrestin2 binding and activation. The identified motif appears responsible for robust arrestin2 recruitment in many other GPCRs. An analysis of receptor sequences and available structural and functional information provides hints on the molecular basis of arrestin2/arrestin3 isoform specificity. Our findings demonstrate how multi-site phosphorylation controls GPCR⋅arrestin interactions and provide a framework to probe the intricate details of arrestin signaling.


Assuntos
Fosfopeptídeos , Receptores CCR5 , Humanos , Fosforilação , beta-Arrestinas/metabolismo , Fosfopeptídeos/metabolismo , Receptores CCR5/metabolismo , Linhagem Celular
7.
Mol Cell ; 83(12): 2091-2107.e7, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209686

RESUMO

Agonist-induced GPCR phosphorylation is a key determinant for the binding and activation of ß-arrestins (ßarrs). However, it is not entirely clear how different GPCRs harboring divergent phosphorylation patterns impart converging active conformation on ßarrs leading to broadly conserved functional responses such as desensitization, endocytosis, and signaling. Here, we present multiple cryo-EM structures of activated ßarrs in complex with distinct phosphorylation patterns derived from the carboxyl terminus of different GPCRs. These structures help identify a P-X-P-P type phosphorylation motif in GPCRs that interacts with a spatially organized K-K-R-R-K-K sequence in the N-domain of ßarrs. Sequence analysis of the human GPCRome reveals the presence of this phosphorylation pattern in a large number of receptors, and its contribution in ßarr activation is demonstrated by targeted mutagenesis experiments combined with an intrabody-based conformational sensor. Taken together, our findings provide important structural insights into the ability of distinct GPCRs to activate ßarrs through a significantly conserved mechanism.


Assuntos
Endocitose , Transdução de Sinais , Humanos , beta-Arrestinas/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Domínios Proteicos , Receptores Acoplados a Proteínas G/metabolismo
8.
Mol Cell ; 82(18): 3318-3320, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113411

RESUMO

Kleist et al. combine NMR spectroscopy and residue contact network analysis to identify a potential allosteric network in CXCR7, a ß-arrestin-biased chemokine receptor, which links the extracellular ligand-binding pocket and the intracellular transducer-coupling region through the receptor transmembrane core.


Assuntos
Transdução de Sinais , Ligantes , beta-Arrestinas
9.
Cell ; 159(7): 1712, 1712.e1, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525884

RESUMO

G-protein-coupled receptors enable cells to recognize numerous external stimuli and to transmit corresponding signals across the plasma membrane to trigger appropriate cellular responses. Crystal structures of a number of these receptors have now been determined in inactive and active conformations bound to chemically and functionally distinct ligands. These crystal structures illustrate overall receptor organization and atomic details of ligand-receptor interactions.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
10.
Mol Cell ; 81(22): 4605-4621.e11, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34582793

RESUMO

G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and ß-arrestins (ßarrs). Interestingly, there are some non-canonical 7TMRs that lack G protein coupling but interact with ßarrs, although an understanding of their transducer coupling preference, downstream signaling, and structural mechanism remains elusive. Here, we characterize two such non-canonical 7TMRs, namely, the decoy D6 receptor (D6R) and the complement C5a receptor subtype 2 (C5aR2), in parallel with their canonical GPCR counterparts. We discover that D6R and C5aR2 efficiently couple to ßarrs, exhibit distinct engagement of GPCR kinases (GRKs), and activate non-canonical downstream signaling pathways. We also observe that ßarrs adopt distinct conformations for D6R and C5aR2, compared to their canonical GPCR counterparts, in response to common natural agonists. Our study establishes D6R and C5aR2 as ßarr-coupled 7TMRs and provides key insights into their regulation and signaling with direct implication for biased agonism.


Assuntos
Membrana Celular/metabolismo , Conformação Proteica , Transdução de Sinais , beta-Arrestinas/química , Animais , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Transporte Proteico , Receptor da Anafilatoxina C5a/metabolismo
11.
Mol Cell ; 80(1): 3-5, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007256

RESUMO

In this issue of Molecular Cell, Su et al. (2020) report a cryo-EM structure of the ß1-adrenergic receptor (ß1AR) in complex with a heterotrimeric Gs protein, which offers novel insights into receptor activation and provides a structural framework to better understand the transducer-coupling mechanism for adrenergic receptors.


Assuntos
Receptores Adrenérgicos , Transdução de Sinais , Isoproterenol
12.
Trends Biochem Sci ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37953092

RESUMO

Science is a collaborative endeavor, and the importance of collaborations across disciplines and boundaries is becoming clearer with the advent of new technologies. This article focuses on key aspects of initiating and sustaining new collaborations, and expanding from bilateral to multilateral efforts to create major impact through team science.

13.
Nat Rev Mol Cell Biol ; 16(2): 69-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25589408

RESUMO

G protein-coupled receptors (GPCRs) are intricately involved in a diverse array of physiological processes and pathophysiological conditions. They constitute the largest class of drug target in the human genome, which highlights the importance of understanding the molecular basis of their activation, downstream signalling and regulation. In the past few years, considerable progress has been made in our ability to visualize GPCRs and their signalling complexes at the structural level. This is due to a series of methodological developments, improvements in technology and the use of highly innovative approaches, such as protein engineering, new detergents, lipidic cubic phase-based crystallization and microfocus synchrotron beamlines. These advances suggest that an unprecedented amount of structural information will become available in the field of GPCR biology in the coming years.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Animais , Humanos , Conformação Proteica , Engenharia de Proteínas/métodos , Transdução de Sinais/genética
14.
Nature ; 583(7818): 862-866, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555462

RESUMO

The ß1-adrenoceptor (ß1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of ß-arrestin 1 (ßarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the ß1AR-ßarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound ß1AR coupled to the G-protein-mimetic nanobody6 Nb80. ßarr1 couples to ß1AR in a manner distinct to that7 of Gs coupling to ß2AR-the finger loop of ßarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in ßarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. ß1AR coupled to ßarr1 shows considerable differences in structure compared with ß1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of ß1AR, and find that formoterol has a lower affinity for the ß1AR-ßarr1 complex than for the ß1AR-Gs complex. The structural differences between these complexes of ß1AR provide a foundation for the design of small molecules that could bias signalling in the ß-adrenoceptors.


Assuntos
Microscopia Crioeletrônica , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/ultraestrutura , beta-Arrestina 1/química , beta-Arrestina 1/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos , Receptores Adrenérgicos beta 1/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/ultraestrutura , Peixe-Zebra , beta-Arrestina 1/metabolismo
15.
Mol Cell ; 72(1): 3-6, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290148

RESUMO

In this issue of Molecular Cell, crystal structures of a prostaglandin D2 receptor determined by Wang et al. (2018) reveal novel insights into differential ligand recognition among the members of lipid-binding GPCRs, and provide a structural framework for the identification of novel therapeutics in inflammatory disorders.


Assuntos
Receptores Imunológicos , Receptores de Prostaglandina , Humanos , Ligantes
16.
Trends Biochem Sci ; 45(8): 693-705, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32402749

RESUMO

Complement factor C5a is an integral constituent of the complement cascade critically involved in the innate immune response, and it exerts its functions via two distinct receptors, C5aR1 and C5aR2. While C5aR1 is a prototypical G-protein-coupled receptor (GPCR), C5aR2 lacks functional coupling to heterotrimeric G proteins, although both receptors efficiently recruit ß arrestins (ßarrs). Here, we discuss the recent studies providing direct structural details of ligand-receptor interactions, and a framework of functional bias in this system, including the differences in terms of structural motifs and transducer coupling. We also discuss the functional analogy of C5aR2 with the atypical chemokine receptors (ACKRs), and highlight the future directions to elucidate the mechanistic basis of the functional divergence of these receptors activated by a common natural agonist.


Assuntos
Complemento C5a/metabolismo , Receptores de Complemento/química , Receptores de Complemento/metabolismo , Animais , Humanos , Relação Estrutura-Atividade
17.
Crit Rev Biotechnol ; 43(4): 575-593, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435095

RESUMO

Bounteous modern and innovative biotechnological tools have resulted in progressive development in the barley breeding program. Doubled haploids developed (homozygous lines) in a single generation is significant. Since the first discovery of haploid plants in 1920 and, in particular, after discovering in vitro androgenesis in 1964 by Guha and Maheshwari, the doubled haploidy techniques have been progressively developed and constantly improved. It has shortened the cultivar development time and has been extensively used in: genetic studies, gene mapping, marker/trait association, and QTL studies. In barley, the haploid occurrence developed gradually from being a sporadic and random process (spontaneous) to haploid development by in vivo method of modified pollination or by in vitro culture of immature male or female gametophytes. Although significant improvement in DH induction protocols has been made, challenges still exist for improvement in areas such as: low efficiency, albinism, genotypic specificity etc. Here, the paper focuses on: haploidization via different in vitro, in vivo techniques, the recent advances technologies like centromere-mediated haploidization, hap induction gene, and Doubled haploid CRISPR. The au-courant work of different researchers in barley using these technologies is reviewed. Studies on different factors affecting haploid induction and work on genome doubling of barley haploids to produce DH lines via spontaneous and induced technologies has also been highlighted.


Assuntos
Hordeum , Haploidia , Hordeum/genética , Plantas , Fenótipo , Melhoramento Vegetal
19.
Trends Biochem Sci ; 43(7): 533-546, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735399

RESUMO

G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting ß-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology.


Assuntos
Endocitose , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Regulação Alostérica/efeitos dos fármacos , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Sítios de Ligação , Endocitose/efeitos dos fármacos , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/metabolismo , Fragmentos de Imunoglobulinas/farmacologia , Ligantes , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Conformação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Transdução de Sinais/efeitos dos fármacos
20.
EMBO Rep ; 21(9): e49886, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32715625

RESUMO

ß-arrestins (ßarrs) are key regulators of G protein-coupled receptor (GPCR) signaling and trafficking, and their knockdown typically leads to a decrease in agonist-induced ERK1/2 MAP kinase activation. Interestingly, for some GPCRs, knockdown of ßarr1 augments agonist-induced ERK1/2 phosphorylation although a mechanistic basis for this intriguing phenomenon is unclear. Here, we use selected GPCRs to explore a possible correlation between the spatial positioning of receptor phosphorylation sites and the contribution of ßarr1 in ERK1/2 activation. We discover that engineering a spatially positioned double-phosphorylation-site cluster in the bradykinin receptor (B2 R), analogous to that present in the vasopressin receptor (V2 R), reverses the contribution of ßarr1 in ERK1/2 activation from inhibitory to promotive. An intrabody sensor suggests a conformational mechanism for this role reversal of ßarr1, and molecular dynamics simulation reveals a bifurcated salt bridge between this double-phosphorylation site cluster and Lys294 in the lariat loop of ßarr1, which directs the orientation of the lariat loop. Our findings provide novel insights into the opposite roles of ßarr1 in ERK1/2 activation for different GPCRs with a direct relevance to biased agonism and novel therapeutics.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G , Células HEK293 , Humanos , Fosforilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA