Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6686, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107313

RESUMO

All-optical diffractive neural networks, as analog artificial intelligence accelerators, leverage parallelism and analog computation for complex data processing. However, their low space transmission efficiency or large spatial dimensions hinder miniaturization and broader application. Here, we propose a terahertz spoof plasmonic neural network on a planar diffractive platform for direct multi-target recognition. Our approach employs a spoof surface plasmon polariton coupler array to construct a diffractive network layer, resulting in a compact, efficient, and easily integrable architecture. We designed three schemes: basis vector classification, multi-user recognition, and MNIST handwritten digit classification. Experimental results reveal that the terahertz spoof plasmonic neural network successfully classifies basis vectors, recognizes multi-user orientation information, and directly processes handwritten digits using a designed input framework comprising a metal grating array, transmitters, and receivers. This work broadens the application of terahertz plasmonic metamaterials, paving the way for terahertz on-chip integration, intelligent communication, and advanced computing systems.

2.
Nat Commun ; 15(1): 7202, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169018

RESUMO

Flexible frequency controls are crucial in many photonic and electronic applications, ranging from communications systems, spectroscopy, and metrology to quantum information processing. However, the state-of-the-art solutions based on nonlinear bulk media, electro-optic effect, and nonlinear metasurfaces incur very limited spectral controllability, and merely a couple of harmonic orders can be independently manipulated. Here, we theoretically propose and experimentally demonstrate synthetic moving-envelope metasurface antennas capable of simultaneously generating arbitrary harmonic orders and independently manipulating their wave properties in a software-defined manner. As proof-of-principle examples, we demonstrate unidirectional frequency transition, frequency comb generation, arbitrary harmonic orders independent control, and their applications in frequency-division multiplexing communications. All these complicated functionalities are achieved by the 1-bit spatiotemporally ON-OFF switching of meta-atoms of the waveguide-integrated metasurface antenna. Our proposed synthetic metasurface antenna solution greatly expands the frontiers of wave engineering and information manipulation, showing promising potential in wireless communications, spectroscopy, metrology, and quantum science.

3.
Nat Commun ; 14(1): 5155, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620303

RESUMO

Metasurfaces have promising potential to revolutionize a variety of photonic and electronic device technologies. However, metasurfaces that can simultaneously and independently control all electromagnetics (EM) waves' properties, including amplitude, phase, frequency, polarization, and momentum, with high integrability and programmability, are challenging and have not been successfully attempted. Here, we propose and demonstrate a microwave universal metasurface antenna (UMA) capable of dynamically, simultaneously, independently, and precisely manipulating all the constitutive properties of EM waves in a software-defined manner. Our UMA further facilitates the spatial- and time-varying wave properties, leading to more complicated waveform generation, beamforming, and direct information manipulations. In particular, the UMA can directly generate the modulated waveforms carrying digital information that can fundamentally simplify the architecture of information transmitter systems. The proposed UMA with unparalleled EM wave and information manipulation capabilities will spark a surge of applications from next-generation wireless systems, cognitive sensing, and imaging to quantum optics and quantum information science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA