Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 20(9): e1012568, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39298531

RESUMO

Clostridioides difficile is a spore-forming pathogen and the most common cause of healthcare-associated diarrhea and colitis in the United States. Besides producing the main virulence factors, toxin A (TcdA) and toxin B (TcdB), many of the common clinical strains encode the C. difficile transferase (CDT) binary toxin. The role of CDT in the context of C. difficile infection (CDI) is poorly understood. Inflammation is a hallmark of CDI and multiple mechanisms of inflammasome activation have been reported for TcdA, TcdB, and the organism. Some studies have suggested that CDT contributes to this inflammation through a TLR2-dependent priming mechanism that leads to the suppression of protective eosinophils. Here, we show that CDT does not prime but instead activates the inflammasome in bone marrow-derived dendritic cells (BMDCs). In bone marrow-derived macrophages (BMDMs), the cell binding and pore-forming component of the toxin, CDTb, alone activates the inflammasome and is dependent on K+ efflux. The activation is not observed in the presence of CDTa and is not observed in BMDMs derived from Nlrp3-/- mice suggesting the involvement of the NLRP3 inflammasome. However, we did not observe evidence of CDT-dependent inflammasome priming or activation in vivo. Mice were infected with R20291 and an isogenic CRISPR/Cas9-generated R20291 ΔcdtB strain of C. difficile. While CDT contributes to increased weight loss and cecal edema at 2 days post infection, the relative levels of inflammasome-associated cytokines, IL-1ß and IL-18, in the cecum and distal colon are unchanged. We also saw CDT-dependent weightloss in Nlrp3-/- mice, suggesting that the increased weightloss associated with the presence of CDT is not a result of NLRP3-dependent inflammasome activation. This study highlights the importance of studying gene deletions in the context of otherwise fully isogenic strains and the challenge of translating toxin-specific cellular responses into a physiological context, especially when multiple toxins are acting at the same time.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Inflamação , Animais , Camundongos , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/imunologia , Infecções por Clostridium/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Enterotoxinas , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
PLoS Pathog ; 19(10): e1011496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871122

RESUMO

Clostridioides difficile is a leading cause of antibiotic-associated diarrhea and nosocomial infection in the United States. The symptoms of C. difficile infection (CDI) are associated with the production of two homologous protein toxins, TcdA and TcdB. The toxins are considered bona fide targets for clinical diagnosis as well as the development of novel prevention and therapeutic strategies. While there are extensive studies that document these efforts, there are several gaps in knowledge that could benefit from the creation of new research tools. First, we now appreciate that while TcdA sequences are conserved, TcdB sequences can vary across the span of circulating clinical isolates. An understanding of the TcdA and TcdB epitopes that drive broadly neutralizing antibody responses could advance the effort to identify safe and effective toxin-protein chimeras and fragments for vaccine development. Further, an understanding of TcdA and TcdB concentration changes in vivo can guide research into how host and microbiome-focused interventions affect the virulence potential of C. difficile. We have developed a panel of alpaca-derived nanobodies that bind specific structural and functional domains of TcdA and TcdB. We note that many of the potent neutralizers of TcdA bind epitopes within the delivery domain, a finding that could reflect roles of the delivery domain in receptor binding and/or the conserved role of pore-formation in the delivery of the toxin enzyme domains to the cytosol. In contrast, neutralizing epitopes for TcdB were found in multiple domains. The nanobodies were also used for the creation of sandwich ELISA assays that allow for quantitation of TcdA and/or TcdB in vitro and in the cecal and fecal contents of infected mice. We anticipate these reagents and assays will allow researchers to monitor the dynamics of TcdA and TcdB production over time, and the impact of various experimental interventions on toxin production in vivo.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Animais , Camundongos , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Enterotoxinas/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Epitopos/metabolismo , Proteínas de Bactérias/metabolismo
3.
PLoS Pathog ; 18(2): e1010323, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176123

RESUMO

Clostridioides difficile infection (CDI) is the leading cause of nosocomial diarrhea and pseudomembranous colitis in the USA. In addition to these symptoms, patients with CDI can develop severe inflammation and tissue damage, resulting in life-threatening toxic megacolon. CDI is mediated by two large homologous protein toxins, TcdA and TcdB, that bind and hijack receptors to enter host cells where they use glucosyltransferase (GT) enzymes to inactivate Rho family GTPases. GT-dependent intoxication elicits cytopathic changes, cytokine production, and apoptosis. At higher concentrations TcdB induces GT-independent necrosis in cells and tissue by stimulating production of reactive oxygen species via recruitment of the NADPH oxidase complex. Although GT-independent necrosis has been observed in vitro, the relevance of this mechanism during CDI has remained an outstanding question in the field. In this study we generated novel C. difficile toxin mutants in the hypervirulent BI/NAP1/PCR-ribotype 027 R20291 strain to test the hypothesis that GT-independent epithelial damage occurs during CDI. Using the mouse model of CDI, we observed that epithelial damage occurs through a GT-independent process that does not involve immune cell influx. The GT-activity of either toxin was sufficient to cause severe edema and inflammation, yet GT activity of both toxins was necessary to produce severe watery diarrhea. These results demonstrate that both TcdA and TcdB contribute to disease pathogenesis when present. Further, while inactivating GT activity of C. difficile toxins may suppress diarrhea and deleterious GT-dependent immune responses, the potential of severe GT-independent epithelial damage merits consideration when developing toxin-based therapeutics against CDI.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/patologia , Diarreia , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Inflamação , Camundongos , Necrose
4.
Proc Natl Acad Sci U S A ; 117(14): 8064-8073, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198200

RESUMO

Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/patologia , Colo/patologia , Mucosa Intestinal/patologia , Células-Tronco/patologia , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Células Cultivadas , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Colo/citologia , Colo/microbiologia , Modelos Animais de Doenças , Feminino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Camundongos , Organoides , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células-Tronco/microbiologia
5.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33468584

RESUMO

Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.


Assuntos
Clostridioides difficile/patogenicidade , Suscetibilidade a Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/genética , Colo , Modelos Animais de Doenças , Enterotoxinas/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Camundongos , Proteínas Mutantes
6.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798529

RESUMO

Clostridioides difficile is a common cause of diarrhea and mortality, especially in immunosuppressed and hospitalized patients. C. difficile is a toxin-mediated disease, but the host cell receptors for C. difficile toxin B (TcdB) have only recently been revealed. Emerging data suggest TcdB interacts with receptor tyrosine kinases during infection. In particular, TcdB can elicit Epidermal Growth Factor Receptor (EGFR) transactivation in human colonic epithelial cells. The mechanisms for this function are not well understood, and the involvement of other receptors in the EGFR family of Erythroblastic Leukemia Viral Oncogene Homolog (ErbB) receptors remains unclear. Furthermore, in an siRNA-knockdown screen for protective genes involved with TcdB toxin pathogenesis, we show ErbB2 and ErbB3 loss resulted in increased cell viability. We hypothesize TcdB induces the transactivation of EGFR and/or ErbB receptors as a component of its cell-killing mechanism. Here, we show in vivo intrarectal instillation of TcdB in mice leads to phosphorylation of ErbB2 and ErbB3. However, immunohistochemical staining for phosphorylated ErbB2 and ErbB3 indicated no discernible difference between control and TcdB-treated mice for epithelial phospho-ErbB2 and phospho-ErbB3. Human colon cancer cell lines (HT29, Caco-2) exposed to TcdB were not protected by pre-treatment with lapatinib, an EGFR/ErbB2 inhibitor. Similarly, lapatinib pre-treatment failed to protect normal human colonoids from TcdB-induced cell death. Neutralizing antibodies against mouse EGFR failed to protect mice from TcdB intrarectal instillation as measured by edema, inflammatory infiltration, and epithelial injury. Our findings suggest TcdB-induced colonocyte cell death does not require EGFR/ErbB receptor tyrosine kinase activation.

7.
Gut Microbes ; 15(1): 2185029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872510

RESUMO

The mouse cecum has emerged as a model system for studying microbe-host interactions, immunoregulatory functions of the microbiome, and metabolic contributions of gut bacteria. Too often, the cecum is falsely considered as a uniform organ with an evenly distributed epithelium. We developed the cecum axis (CecAx) preservation method to show gradients in epithelial tissue architecture and cell types along the cecal ampulla-apex and mesentery-antimesentery axes. We used imaging mass spectrometry of metabolites and lipids to suggest functional differences along these axes. Using a model of Clostridioides difficile infection, we show how edema and inflammation are unequally concentrated along the mesenteric border. Finally, we show the similarly increased edema at the mesenteric border in two models of Salmonella enterica serovar Typhimurium infection as well as enrichment of goblet cells along the antimesenteric border. Our approach facilitates mouse cecum modeling with detailed attention to inherent structural and functional differences within this dynamic organ.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Ceco , Epitélio , Células Caliciformes , Interações entre Hospedeiro e Microrganismos
8.
Gut Microbes ; 15(1): 2225841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350393

RESUMO

BACKGROUND & AIM: Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and pseudomembranous colitis. Two protein toxins, TcdA and TcdB, produced by C. difficile are the major determinants of disease. However, the pathophysiological causes of diarrhea during CDI are not well understood. Here, we investigated the effects of C. difficile toxins on paracellular permeability and apical ion transporters in the context of an acute physiological infection. METHODS: We studied intestinal permeability and apical membrane transporters in female C57BL/6J mice. Üssing chambers were used to measure paracellular permeability and ion transporter function across the intestinal tract. Infected intestinal tissues were analyzed by immunofluorescence microscopy and RNA-sequencing to uncover mechanisms of transporter dysregulation. RESULTS: Intestinal permeability was increased through the size-selective leak pathway in vivo during acute CDI in a 2-day-post infection model. Chloride secretory activity was reduced in the cecum and distal colon during infection by decreased CaCC and CFTR function, respectively. SGLT1 activity was significantly reduced in the cecum and colon, accompanied by ablated SGLT1 expression in colonocytes and increased luminal glucose concentrations. SGLT1 and DRA expression was ablated by either TcdA or TcdB during acute infection, but NHE3 was decreased in a TcdB-dependent manner. The localization of key proteins that link filamentous actin to the ion transporters in the apical plasma membrane was unchanged. However, Sglt1, Nhe3, and Dra were drastically reduced at the transcript level, implicating downregulation of ion transporters in the mechanism of diarrhea during CDI. CONCLUSIONS: CDI increases intestinal permeability and decreases apical abundance of NHE3, SGLT1, and DRA. This combination likely leads to dysfunctional water and solute absorption in the large bowel, causing osmotic diarrhea. These findings provide insights into the pathophysiological mechanisms underlying diarrhea and may open novel avenues for attenuating CDI-associated diarrhea.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Diarreia , Regulação para Baixo , Camundongos Endogâmicos C57BL , Permeabilidade , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo
9.
Cell Rep ; 36(10): 109683, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496241

RESUMO

Clostridioides difficile is the leading cause of nosocomial intestinal infections in the United States. Ingested C. difficile spores encounter host bile acids and other cues that are necessary for germinating into toxin-producing vegetative cells. While gut microbiota disruption (often by antibiotics) is a prerequisite for C. difficile infection (CDI), the mechanisms C. difficile employs for colonization remain unclear. Here, we pioneered the application of imaging mass spectrometry to study how enteric infection changes gut metabolites. We find that CDI induces an influx of bile acids into the gut within 24 h of the host ingesting spores. In response, the host reduces bile acid biosynthesis gene expression. These bile acids drive C. difficile outgrowth, as mice receiving the bile acid sequestrant cholestyramine display delayed colonization and reduced germination. Our findings indicate that C. difficile may facilitate germination upon infection and suggest that altering flux through bile acid pathways can modulate C. difficile outgrowth in CDI-prone patients.


Assuntos
Antibacterianos/farmacologia , Ácidos e Sais Biliares/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Animais , Infecções por Clostridium/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA