Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883910

RESUMO

Ever increasing demands of data traffic makes the transition to 6G communications in the 300 GHz band inevitable. Short-channel field-effect transistors (FETs) have demonstrated excellent potential for detection and generation of terahertz (THz) and sub-THz radiation. Such transistors (often referred to as TeraFETs) include short-channel silicon complementary metal oxide (CMOS). The ballistic and quasi-ballistic electron transport in the TeraFET channels determine the TeraFET response at the sub-THz and THz frequencies. TeraFET arrays could form plasmonic crystals with nanoscale unit cells smaller or comparable to the electron mean free path but with the overall dimensions comparable with the radiation wavelength. Such plasmonic crystals have a potential of supporting the transition to 6G communications. The oscillations of the electron density (plasma waves) in the FET channels determine the phase relations between the unit cells of a FET plasmonic crystal. Excited by the impinging radiation and rectified by the device nonlinearities, the plasma waves could detect both the radiation intensity and the phase enabling the line-of-sight terahertz (THz) detection, spectrometry, amplification, and generation for 6G communication.

2.
Opt Express ; 28(2): 2480-2498, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121937

RESUMO

We develop the device models for the far-infrared interband photodetectors (IPs) with the graphene-layer (GL) sensitive elements and the black Phosphorus (b-P) or black-Arsenic (b-As) barrier layers (BLs). These far-infrared GL/BL-based IPs (GBIPs) can operate at the photon energies ℏ Ω smaller than the energy gap, ΔG, of the b-P or b-As or their compounds, namely, at ℏ Ω≲2Δ G/3 corresponding to the wavelength range λ≳(6-12) µm. The GBIP operation spectrum can be shifted to the terahertz range by increasing the bias voltage. The BLs made of the compounds b-AsxB1-x with different x, enable the GBIPs with desirable spectral characteristics. The GL doping level substantially affects the GBIP characteristics and is important for their optimization. A remarkable feature of the GBIPs under consideration is a substantial (over an order of magnitude) lowering of the dark current due to a partial suppression of the dark-current gain accompanied by a fairly high photoconductive gain. Due to a large absorption coefficient and photoconductive gain, the GBIPs can exhibit large values of the internal responsivity and dark-current-limited detectivity exceeding those of the quantum-well and quantum-dot IPs using the intersubband transitions. The GBIPs with the b-P and b-As BLs can operate at longer radiation wavelengths than the infrared GL-based IPs comprising the BLs made of other van der Waals materials and can also compete with all kinds of the far-infrared photodetectors.

3.
Opt Express ; 28(16): 24136-24151, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752399

RESUMO

We propose the far-infrared and terahertz emitting diodes (FIR-EDs and THz-EDs) based on the graphene-layer/black phosphorus (GL/b-P) and graphene-layer/MoS2 (GL/MoS2) heterostructures with the lateral hole and vertical electron injection and develop their device models. In these EDs, the GL serves as an active region emitting the FIR and THz photons. Depending on the material of the electron injector, the carriers in the GL can be either cooled or heated dictated by the interplay of the vertical electron injection and optical phonon recombination. The proposed EDs based on GL/b-P heterostructures can be efficient sources of the FIP and THz radiation operating at room temperature.

4.
Opt Express ; 27(4): 4004-4013, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876023

RESUMO

We demonstrate that a phase difference between terahertz signals coupled to the gate and source and gate and drain terminals of a field effect transistor (a TeraFET) induces a plasmon-assisted DC current, which is dramatically enhanced in the vicinity of plasmonic resonances. We describe a TeraFET operation with identical radiation amplitudes at the source and drain antennas but with a phase-shift-induced asymmetry. In this regime, the TeraFET operates as a tunable resonant polarization-sensitive plasmonic spectrometer, operating in the sub-terahertz and terahertz ranges of frequencies. We also propose an effective scheme of a phase-sensitive homodyne detector operating in this phase-asymmetry mode, which allows for a dramatic enhancement of the response. These regimes can be implemented in different materials systems, including silicon. The p-diamond TeraFETs could support operation in the 200 to 600 GHz atmospheric windows, which is especially important for beyond 5G communication systems.

5.
Nano Lett ; 17(1): 377-383, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073263

RESUMO

We report results of investigation of the low-frequency electronic excess noise in quasi-1D nanowires of TaSe3 capped with quasi-2D h-BN layers. Semimetallic TaSe3 is a quasi-1D van der Waals material with exceptionally high breakdown current density. It was found that TaSe3 nanowires have lower levels of the normalized noise spectral density, SI/I2, compared to carbon nanotubes and graphene (I is the current). The temperature-dependent measurements revealed that the low-frequency electronic 1/f noise becomes the 1/f2 type as temperature increases to ∼400 K, suggesting the onset of electromigration (f is the frequency). Using the Dutta-Horn random fluctuation model of the electronic noise in metals, we determined that the noise activation energy for quasi-1D TaSe3 nanowires is approximately EP ≈ 1.0 eV. In the framework of the empirical noise model for metallic interconnects, the extracted activation energy, related to electromigration is EA = 0.88 eV, consistent with that for Cu and Al interconnects. Our results shed light on the physical mechanism of low-frequency 1/f noise in quasi-1D van der Waals semimetals and suggest that such material systems have potential for ultimately downscaled local interconnect applications.

6.
Opt Express ; 25(5): 5536-5549, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380812

RESUMO

We report on the device model for the infrared photodetectors based on the van der Waals (vdW) heterostructures with the radiation absorbing graphene layers (GLs). These devices rely on the electron interband photoexcitation from the valence band of the GLs to the continuum states in the conduction band of the inter-GL barrier layers. We calculate the photocurrent and the GL infrared photodetector (GLIP) responsivity at weak and strong intensities of the incident radiation and conclude that the GLIPs can surpass or compete with the existing infrared and terahertz photodetectors. The obtained results can be useful for the GLIP design and optimization.

7.
Opt Express ; 24(12): 12730-9, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410292

RESUMO

The new optical gating technique uses a femtosecond optical laser pulses for the photoconductive detection of short pulses of terahertz (THz) radiation. This technique reproduces the shape of the THz pulse and after pulse plasmonic response of the two-dimensional electron gas in a short channel high electron mobility transistor (HEMT). The results are in excellent agreement with the electro-optic effect measurements and with the simulation results obtained in the frame of a two-dimensional hydrodynamic model. The femtosecond optical laser pulse time is delayed with respect to the THz pulse and generates a large concentration of the electron-hole pairs in the AlGaAs/InGaAs HEMT. This drastically increases the channel conductivity on the femtosecond scale and effectively shorts the device quenching the transistor response. The achieved time resolution is better than 250 femtoseconds and could be improved using shorter femtosecond laser pulses. The spatial resolution of this technique is on the order of tens of nanometers or even smaller. It could be applied for studying the electron transport in a variety of electronic devices ranging from silicon MOSFETs to heterostructure bipolar transistors.

8.
Opt Lett ; 41(22): 5333-5336, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842126

RESUMO

We experimentally and numerically analyze the charge transfer THz plasmons using an asymmetric plasmonic assembly of metallic V-shaped blocks. The asymmetric design of the blocks allows for the excitation of classical dipolar and multipolar modes due to the capacitive coupling. Introducing a conductive microdisk between the blocks, we facilitated the excitation of the charge transfer plasmons and studied their characteristics along with the capacitive coupling by varying the size of the disk.

9.
Opt Express ; 23(15): 19646-55, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367622

RESUMO

Carrier dynamics in high-Al-content AlGaN epilayers with different dislocation densities from 5 × 10(8) cm(-2) to 5 × 10(9) cm(-2) is studied by comparing the photoluminescence decay with the decay of carrier density. The carrier density decay was investigated using the light-induced transient grating technique. This comparison shows that the luminescence at the nonequilibrium carrier densities expected in operating light-emitting diodes depends on the recombination of free carriers and the localized exciton-like electron-hole pairs and localization-delocalization processes. In addition, a fraction of the nonequilibrium carriers is captured by the deep capture centers with extremely long lifetimes. These carriers have an insignificant contribution to the band-to-band radiative recombination. This capture is an important factor in decreasing the emission efficiency.

10.
Opt Express ; 22(14): 16802-18, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25090498

RESUMO

A concept of a solid-state lighting engine for artwork-specific illumination with controlled photochemical safety is introduced. The engine is based on a tetrachromatic cluster of colored light-emitting diodes wirelessly controlled via an external smart device. By using an instantaneous dimming functionality, the driving software allows for maintaining the damage irradiance relevant to a particular type of photosensitive artwork material at a constant value, while varying the chromaticity and color rendition properties of the generated light. The effect of the constant damage irradiance on the visual impression from artworks is demonstrated for the lighting engine operating in three modes, such as selecting color temperature, tuning color saturating ability, and shifting chromaticity outside white light locus, respectively.

11.
Opt Express ; 22 Suppl 2: A491-7, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922258

RESUMO

The influence of carrier localization on photoluminescence efficiency droop and stimulated emission is studied in AlGaN multiple quantum wells with different strength of carrier localization. We observe that carrier delocalization at low temperatures predominantly enhances the nonradiative recombination and causes the droop, while the main effect of the delocalization at elevated temperatures is enhancement of PL efficiency due to increasing contribution of bimolecular recombination of free carriers. When the carrier thermal energy exceeds the dispersion of the potential fluctuations causing the carrier localization, the droop is caused by stimulated carrier recombination.

12.
Nanomaterials (Basel) ; 14(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470789

RESUMO

High thermal conductivity and a high breakdown field make diamond a promising candidate for high-power and high-temperature semiconductor devices. Diamond also has a higher radiation hardness than silicon. Recent studies show that diamond has exceptionally large electron and hole momentum relaxation times, facilitating compact THz and sub-THz plasmonic sources and detectors working at room temperature and elevated temperatures. The plasmonic resonance quality factor in diamond TeraFETs could be larger than unity for the 240-600 GHz atmospheric window, which could make them viable for 6G communications applications. This paper reviews the potential and challenges of diamond technology, showing that diamond might augment silicon for high-power and high-frequency compact devices with special advantages for extreme environments and high-frequency applications.

13.
Opt Express ; 21(22): 26642-56, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216885

RESUMO

We present an approach to the optimization of the trichromatic spectral power distributions (SPDs) of phosphor-converted (p-c) light-emitting diodes (LEDs) in respect of each of four different color rendition properties (high color fidelity, color saturating, color dulling, and color preference). The approach is based on selecting a model family of Eu2+ phosphors and finding the optimal peak wavelengths of the phosphor bands as functions of the luminous efficacy of radiation. A blue component due to either phosphor photoluminescence or InGaN electroluminescence with the peak wavelength at about 460 nm was found to be an optimal one for the high-fidelity, color-dulling, and color-preference LEDs. The high-fidelity and color-preference LEDs need red phosphors with the peak wavelength of 610-615 nm. The high-fidelity LEDs were shown to require a true green (~530 nm) phosphor component, whereas a cyan (~510 nm) component is the prerequisite of the color-saturating and color-preference LEDs. Deep-blue (~445 nm) and deep-red (~625 nm) components are required for the color-saturating LEDs. A broad yellow band similar to that of Ce(3+) emission is to be used in the color-dulling LEDs. The SPDs of practical phosphor blends for the high-fidelity, color-saturating, and color-preference p-c LEDs are demonstrated.

14.
Opt Express ; 21(25): 31567-77, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514730

RESUMO

We propose and analyze the concept of injection terahertz (THz) lasers based on double-graphene-layer (double-GL) structures utilizing the resonant radiative transitions between GLs. We calculate main characteristics of such double-GL lasers and compare them with the characteristics of the GL lasers with intra-GL interband transitions. We demonstrate that the double-GL THz lasers under consideration can operate in a wide range of THz frequencies and might exhibit advantages associated with the reduced Drude absorption, weaker temperature dependence, voltage tuning of the spectrum, and favorable injection conditions.

15.
Nano Lett ; 12(5): 2294-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22506589

RESUMO

We show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of graphene. It was found in a systematic study that some gases change the electrical resistance of graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic frequency f(c) of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from f(c) = 10-20 Hz to f(c) = 1300-1600 Hz for tetrahydrofuran and chloroform vapors, respectively. The obtained results indicate that the low-frequency noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical.

16.
Biomaterials ; 294: 122024, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716587

RESUMO

The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patterning, implantation, and re-hydration steps, to deliver brain-like hydrogel implants into the nervous tissue. We monitored in real-time the ultra-soft hydrogel re-swelling kinetics in vivo using microcomputed tomography, achieved by embedding gold nanoparticles inside the hydrogel for contrast enhancement. We found that re-swelling in vivo strongly depends on the implant geometry and water availability at the hydrogel-tissue interface. Buckling of the implant inside the brain occurs when the soft implant is tethered to the cranium. Finite-element and analytical models reveal how the shank geometry, modulus and anchoring govern in vivo buckling. Taken together, these considerations on re-swelling kinetics of hydrogel constructs, implant geometry and soft implant-tissue mechanical interplay can guide the engineering of biomimetic brain implants.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Microtomografia por Raio-X , Ouro , Encéfalo/diagnóstico por imagem , Engenharia Tecidual
17.
Opt Express ; 20(9): 9755-62, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535067

RESUMO

The spectral power distributions (SPDs) of solid-state sources were optimized for rendering the highest number of colors with a perceptually noticeable reduction in chroma (dulling) while maintaining the hue distortion below an acceptable threshold. Statistical color rendition indices derived from the analysis of color-shift vectors of 1269 Munsell samples were used in the objective functions for the optimization of SPDs of the color-dulling sources. The starting optimization point was the SPD composed of narrow yellow and blue (YB) emissions, which both dulls colors and distorts hues. Two methods were applied to reduce the hue-distorting effect of the narrow-band YB source. The first method, broadening the spectral bands, yields SPDs similar to that of a dichromatic white light-emitting diode (LED) with the partial conversion of narrow-band blue electroluminescence to wide-band yellow photoluminescence. The second method, multiplying the spectral bands, results in the SPDs similar to those of trichromatic clusters of red, yellow, and blue (RYB) and amber, green, and blue (AGB) LEDs.


Assuntos
Colorimetria/instrumentação , Lasers de Estado Sólido , Iluminação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Opt Express ; 20(5): 5356-67, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418343

RESUMO

A source of white light with continuously tuned color rendition properties, such as color fidelity, as well as color saturating and color dulling ability has been developed. The source, which is composed of red (R), amber (A), green (G), and blue (B) light-emitting diodes, has a spectral power distribution varied as a weighted sum of "white" RGB and AGB blends. At the RGB and AGB end-points, the source has a highest color saturating and color dulling ability, respectively, as follows from the statistical analysis of the color-shift vectors for 1269 Munsell samples. The variation of the weight parameter allows for continuously traversing all possible metameric RAGB blends, including that with the highest color fidelity. The source was used in a psychophysical experiment on the estimation of the color appearance of familiar objects, such as vegetables, fruits, and soft-drink cans of common brands, at correlated color temperatures of 3000 K, 4500 K, and 6500 K. By continuously tuning the weight parameter, each of 100 subjects selected RAGB blends that, to their opinion, matched lighting characterized as "most saturating," "most dulling," "most natural," and "preferential". The end-point RGB and AGB blends have been almost unambiguously attributed to "most saturating" and "most dulling" lighting, respectively. RAGB blends that render a highest number of colors with high fidelity have, on average, been attributed to "most natural" lighting. The "preferential" color quality of lighting has, on average, been matched to RAGB blends that provide color rendition with fidelity somewhat reduced in favor of a higher saturation. Our results infer that tunable "color rendition engines" can validate color rendition metrics and provide lighting meeting specific needs and preferences to color quality.


Assuntos
Cor , Colorimetria/instrumentação , Iluminação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Semicondutores
19.
Opt Express ; 20(23): 25195-200, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187336

RESUMO

The photoluminescence droop effect, i.e., the decrease in emission efficiency with increasing excitation intensity, is observed and studied in GaN epilayers with different carrier lifetimes. Spontaneous and stimulated emissions have been studied in the front-face and edge emission configurations. The onset of stimulated recombination occurs simultaneously with the droop onset in the front-face configuration and might be considered as an origin of the droop effect in GaN epilayers.

20.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269253

RESUMO

We present an update of the Rensselaer Polytechnic Institute (RPI) thin-film transistor (TFT) compact model. The updated model implemented in Simulation Program with Integrated Circuit Emphasis (SPICE) accounts for the gate voltage-dependent channel layer thickness, enables the accurate description of the direct current (DC) characteristics, and uses channel segmentation to allow for terahertz (THz) frequency simulations. The model introduces two subthreshold ideality factors to describe the control of the gate voltage on the channel layer and its effect on the drain-to-source current and the channel capacitance. The calculated field distribution in the channel is used to evaluate the channel segment parameters including the segment impedance, kinetic inductance, and gate-to-segment capacitances. Our approach reproduces the conventional RPI TFT model at low frequencies, fits the measured current-voltage characteristics with sufficient accuracy, and extends the RPI TFT model applications into the THz frequency range. Our calculations show that a single TFT or complementary TFTs could efficiently detect the sub-terahertz and terahertz radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA