Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 514: 87-98, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38876166

RESUMO

The heart is the central organ of the circulatory system, and its proper development is vital to maintain human life. As fetal heart development is complex and poorly understood, we use single-cell RNA sequencing to profile the gene expression landscapes of human fetal hearts from the four-time points: 8, 10, 11, 17 gestational weeks (GW8, GW10, GW11, GW17), and identified 11 major types of cells: erythroid cells, fibroblasts, heart endothelial cells, ventricular cardiomyocytes, atrial cardiomyocytes, macrophage, DCs, smooth muscle, pericytes, neural cells, schwann cells. In addition, we identified a series of differentially expressed genes and signaling pathways in each cell type between different gestational weeks. Notably, we found that ANNEXIN, MIF, PTN, GRN signalling pathways were simple and fewer intercellular connections in GW8, however, they were significantly more complex and had more intercellular communication in GW10, GW11, and GW17. Notably, the interaction strength of OSM signalling pathways was gradually decreased during this period of time (from GW8 to GW17). Together, in this study, we presented a comprehensive and clear description of the differentiation processes of all the main cell types in the human fetal hearts, which may provide information and reference data for heart regeneration and heart disease treatment.


Assuntos
Comunicação Celular , Análise de Célula Única , Transcriptoma , Humanos , Comunicação Celular/genética , Transcriptoma/genética , Análise de Sequência de RNA , Coração Fetal/metabolismo , Coração Fetal/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Transdução de Sinais/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Idade Gestacional
2.
J Vis Exp ; (209)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39037235

RESUMO

Mesenchymal stem cells (MSCs) are a population of multipotent cells with remarkable regenerative and immunomodulatory properties. Wharton's jelly (WJ) from the umbilical cord (UC) has gained increasing interest in the biomedical field as an outstanding source of MSCs. However, challenges such as limited supply and lack of standardization in existing methods have arisen. This article presents a novel method for enhancing MSC yield by dissecting intact WJ from the umbilical cord. The method employs blunt dissection to remove the epithelial layer, maintaining the integrity of the entire WJ and resulting in an increased quantity and viability of harvested MSCs. This approach significantly reduces WJ waste compared to conventional sharp dissection methods. To ensure the purity of WJ-MSCs and minimize external cellular influence, a procedure utilizing internal tension to peel off the endothelium after flipping the UC was conducted. Additionally, the Petri dish was inverted for a short time during explant culture to improve attachment and cell outgrowth. Comparative analysis demonstrated the superiority of the proposed method, showing a higher yield of WJ and WJ-MSCs with better viability than traditional methods. The similar morphology and expression pattern of cell surface markers in both methods confirm their characterization and purity for various applications. This method provides a high-yield and high-viability approach for WJ-MSC isolation, demonstrating great potential for the clinical application of MSCs.


Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Humanos , Geleia de Wharton/citologia , Separação Celular/métodos , Técnicas Citológicas/métodos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA